Nothing
################################
### NORMAL DISTRIBUTION ###
################################
#' Normal Distribution Function
#'
#' This function calculates the normal distribution probability density.
#'
#' @param x Optional numeric value (not needed for interactive mode)
#' @param learn Logical, if TRUE shows step-by-step explanation
#' @param interactive Logical, if TRUE enables interactive practice mode
#' @return The normal probability density (for non-interactive mode)
#' @importFrom crayon bold green yellow
#'
#' @examples
#' x <- 0.1
#'
#' # Simple calculation
#' normal(x)
#'
#' # Learning mode
#' normal(x, learn = TRUE)
#'
#' # Interactive mode
#' if(interactive()){
#' normal(interactive = TRUE)
#' }
#'
#' @export
normal <- function(x = NULL, learn = FALSE, interactive = FALSE) {
# Validate parameters
if (learn && interactive) {
stop("learn and interactive modes cannot be enabled simultaneously")
}
if (!interactive && is.null(x)) {
stop("x is required when not in interactive mode")
}
# Interactive mode
if (interactive) {
initImages("normal.png")
cont_aux <- 0
message("\nInsert your data set:\n")
x = getUserAction()
message("\nOK! Next Move !!\n")
flag <- 1
while(flag == 1) {
message("Please, insert the result of the normal distribution calculus for your data (if the result has decimal part, round to the 3rd): ")
usr_resp <- as.numeric(readline(prompt = ""))
if(usr_resp == round(normal(x), 3)) {
flag <- 0
message(bold("\n\nWell done !\n\n"))
} else {
cont_aux <- cont_aux + 1
message("Ups, that might not be correct...")
if(cont_aux == 1) {
message(yellow("\nHint -> Psst!... Look at the formula on the plot panel at your side -->\n\n"))
}
else if(cont_aux > 1 ) {
message(yellow("\nHint 2 -> Check that you are entering your result correctly. It's easy to be wrong.\n\n"))
}
}
}
return(invisible(NULL))
}
# Learning mode
if (learn) {
pi <- 3.14159265358979323846
e <- 2.718281828459045235360
message(bold("\n__NORMAL DISTRIBUTION__ \n"))
message("\n The standard normal distribution is one that has the mean value of zero, M = 0, and the standard deviation of unity, Sigma = 1.
Its density function is:\n")
message(green("\nFormula -> (1/(2pi)^(1/2)) * (e)^((-x^2)/2)\n"))
message(bold("\n__Use Example__\n"))
message("\nFirst of all, we need to know the e, the s Euler's number\n")
message("In this case e=",e," \n")
message("\nFinally, we need to know pi, the number pi.\n")
message("In this case pi=",pi,"\n")
res <- normal(x)
message("\nFormula applied -> (1/(2*",pi,")^(1/2)) * (",e,")^((-",x,"^2)/2) = ", bold(res))
message("\nNow try by your own! :D\n")
message("\nUse normal(interactive = TRUE) function to practice.\n")
return(res)
}
# Simple calculation mode
e <- 2.718281828459045235360
pi <- 3.14159265358979323846
res <- (1/(2*pi)^(1/2)) * (e)^((-x^2)/2)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.