Nothing
## ---- eval=F, include = FALSE-------------------------------------------------
# knitr::opts_chunk$set(
# collapse = TRUE,
# comment = "#>"
# )
## ----eval=F, setup------------------------------------------------------------
# library(Unico)
# library(matrixStats)
#
# #For visualization in this vignette
# install.packages(c("ggplot2","ggpubr","hexbin","egg"))
# source("https://github.com/cozygene/Unico/raw/main/vignettes/vignetts.utils.r")
## ----eval=F-------------------------------------------------------------------
# data_path <- "./"
# if(!file.exists(file.path(data_path, "pbmc.rds"))){
# download.file("https://github.com/cozygene/Unico/raw/main/vignettes/pbmc.rds", file.path(data_path,"pbmc.rds"))
# }
# sim.data = readRDS(file.path(data_path,"pbmc.rds"))
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# unico.res = list()
#
# #parameter learning
# unico.res$params.hat <- Unico(sim.data$X, sim.data$W, C1 = NULL, C2 = NULL, parallel = TRUE)
#
# #tensor
# unico.res$Z.hat = tensor(sim.data$X, W = sim.data$W, C1 = NULL, C2 = NULL,
# unico.res$params.hat, parallel = FALSE)
#
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# # evaluate tensor performance on features with variation
# unico.res$Z.corrs = calc_Z_corrs(Z.true = sim.data$Z.scale,
# Z.hat = unico.res$Z.hat,
# eval.feature.source = sim.data$variable.feature.source)
#
# colMedians(unico.res$Z.corrs)
## ----eval=F, echo = T, results = 'hide', fig.show='hide'----------------------
# low.gene = sample(rownames(sim.data$params$entropies[sim.data$params$entropies < quantile(sim.data$params$entropies, 0.25), ,drop= F]), 1)
#
# plot(sim.data$Z[3,low.gene, ], unico.res$Z.hat[3,low.gene, ]) + title (low.gene)
## ----echo = FALSE, out.width = "400px"----------------------------------------
knitr:: include_graphics("tensor.cor.png")
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# data_path <- "./"
# if(!file.exists(file.path(data_path, "liu.rds"))){
# download.file("https://github.com/cozygene/Unico/raw/main/vignettes/liu.rds", file.path(data_path,"liu.rds"))
# }
# if(!file.exists(file.path(data_path, "hannum.rds"))){
# download.file("https://github.com/cozygene/Unico/raw/main/vignettes/hannum.rds", file.path(data_path,"hannum.rds"))
# }
# liu = readRDS(file.path(data_path,"liu.rds"))
# hannum = readRDS(file.path(data_path,"hannum.rds"))
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# source.ids = colnames(liu$W)
# n = ncol(liu$X)
# m = nrow(liu$X)
# k = ncol(liu$W)
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# unico.liu = list()
# unico.liu$params.hat = Unico(X = liu$X, W = liu$W,
# C1 = liu$cov[, c("age", "sex", "disease","smoking")],
# C2 = liu$ctrl_pcs)
#
# unico.liu$params.hat = association_parametric(X = liu$X, unico.liu$params.hat)
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# unico.hannum = list()
# unico.hannum$params.hat = Unico(X = hannum$X, W = hannum$W,
# C1 = hannum$cov[, c("age", "sex", "ethnicity")],
# C2 = cbind(hannum$ctrl_pcs, hannum$cov[,"plate", drop = F]))
#
# unico.hannum$params.hat = association_parametric(X = hannum$X, unico.hannum$params.hat)
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# liu.marg.pvals = unico.liu$params.hat$parametric$gammas_hat_pvals[, paste0(source.ids, ".age")]
# hannum.marg.pvals = unico.hannum$params.hat$parametric$gammas_hat_pvals[, paste0(source.ids, ".age")]
# print(sum(liu.marg.pvals < 0.05/(m*k)))
# print(hannum.marg.pvals[liu.marg.pvals < 0.05/(m*k)])
## ----eval=F, echo = T, results = 'hide', fig.height=4.5, fig.width=22---------
# qq_age_g = plot_qq(pvals_mat = liu.marg.pvals,
# labels = source.ids,
# ggarrange.nrow = 1, ggarrange.ncol = k,
# alpha = 0.5, text.size = 20,
# title = "Parametric association testing (age) at cell-type resolution")
# qq_age_g
## ----echo = FALSE, out.width = "675px"----------------------------------------
knitr:: include_graphics("qq_age.png")
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# liu.joint.pvals = unico.liu$params.hat$parametric$gammas_hat_pvals.joint[, "age"]
# hannum.joint.pvals = unico.hannum$params.hat$parametric$gammas_hat_pvals.joint[, "age"]
# print(sum(liu.joint.pvals < 0.05/m))
# print(sum(hannum.joint.pvals[liu.joint.pvals < 0.05/m] < (0.05/sum(liu.joint.pvals < 0.05/m))))
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# unico.liu$params.hat = association_asymptotic(X = liu$X, unico.liu$params.hat)
# liu.marg.pvals.asym = unico.liu$params.hat$asymptotic$gammas_hat_pvals[, paste0(source.ids, ".age")]
## ----eval=F, echo = T, results = 'hide', fig.height=4.5, fig.width=22---------
# qq_compare_g = plot_qq_compare(pvals_mat1 = liu.marg.pvals,
# pvals_mat2 = liu.marg.pvals.asym,
# labels = source.ids,
# ggarrange.nrow = 1, ggarrange.ncol = k,
# alpha = 0.05, text.size = 20,
# xlab = "Parametric", ylab = "Asymptotic",
# title = "Parametric vs Asymptotic pvals")
# qq_compare_g
## ----echo = FALSE, out.width = "675px"----------------------------------------
knitr:: include_graphics("qq_compare.png")
## ----eval=F, echo = T, results = 'hide'---------------------------------------
# C1.shuffle = hannum$cov[, c("age", "sex", "ethnicity")]
# C1.shuffle[, "age"] = hannum$cov[sample(1:nrow(hannum$cov)), "age"]
#
# unico.hannum.shuffle = list()
# unico.hannum.shuffle$params.hat = Unico(X = hannum$X, W = hannum$W,
# C1 = C1.shuffle,
# C2 = cbind(hannum$ctrl_pcs, hannum$cov[,"plate", drop = F]))
# unico.hannum.shuffle$params.hat = association_asymptotic(X = hannum$X, unico.hannum.shuffle$params.hat)
# unico.marg.pvals.asym.calib = unico.hannum.shuffle$params.hat$asymptotic$gammas_hat_pvals[, paste0(source.ids, ".age")]
## ----eval=F, echo = T, results = 'hide', fig.height=4.5, fig.width=22---------
# qq_calib_g = plot_qq(pvals_mat = unico.marg.pvals.asym.calib,
# labels = source.ids,
# ggarrange.nrow = 1, ggarrange.ncol = k,
# alpha = 0.5, text.size = 20,
# title = "Calibration of asymptotic association testing")
# qq_calib_g
#
## ----echo = FALSE, out.width = "675px"----------------------------------------
knitr:: include_graphics("qq_calib.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.