TANG.IDX | R Documentation |
Computes the TANG (Y. Tang et al., 2005) index for a result of either FCM or EM clustering from user specified cmin
to cmax
.
TANG.IDX(x, cmax, cmin = 2, method = "FCM", fzm = 2, nstart = 20, iter = 100)
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
cmax |
a maximum number of clusters to be considered. |
cmin |
a minimum number of clusters to be considered. The default is |
method |
a character string indicating which clustering method to be used ( |
fzm |
a number greater than 1 giving the degree of fuzzification for |
nstart |
a maximum number of initial random sets for FCM for |
iter |
a maximum number of iterations for |
The Tang index is defined as
TANG(c) = \frac{\sum_{j=1}^c \sum_{i=1}^n\mu_{ij}^2\| {x}_i-{v}_j\|^2 + \frac{1}{c(c-1)}\sum_{j\neq k}\| {v}_j-{v}_k\|^2}{\min_{j\neq k} \{ \| {v}_j-{v}_k\|^2 \}+\frac{1}{c}}.
The smallest value of TANG(c)
indicates a valid optimal partition.
TANG |
the TANG index for |
Nathakhun Wiroonsri and Onthada Preedasawakul
Y. Tang, F. Sun, and Z. Sun, “Improved validation index for fuzzy clustering,” in Proceedings of the 2005, American Control Conference, 2005., pp. 1120–1125 vol. 2, 2005. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1470111&isnumber=31519
R1_data, TANG.IDX, FzzyCVIs, WP.IDX, Hvalid
library(UniversalCVI)
# The data is from Wiroonsri (2024).
x = R1_data[,1:2]
# ---- FCM algorithm ----
# Compute the TANG index
FCM.TANG = TANG.IDX(scale(x), cmax = 15, cmin = 2, method = "FCM",
fzm = 2, nstart = 20, iter = 100)
print(FCM.TANG)
# The optimal number of cluster
FCM.TANG[which.min(FCM.TANG$TANG),]
# ---- EM algorithm ----
# Compute the TANG index
EM.TANG = TANG.IDX(scale(x), cmax = 15, cmin = 2, method = "EM",
nstart = 20, iter = 100)
print(EM.TANG)
# The optimal number of cluster
EM.TANG[which.min(EM.TANG$TANG),]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.