Varmer
is an R library for merging satellite-based or model-based gridded images with ground-based observations, using a Variational Merging Approach (Ulloa et al. 2018).
Bugs / comments / questions / collaboration of any kind are very welcomed.
Installing the latest stable version from CRAN:
install.packages("VARMER")
Loading required packages:
```{r Loading_other_pks, eval = TRUE, message=FALSE} library(zoo) library(sf) library(raster) library(tictoc) library(cluster) library(parallel) library(ggplot2) library(VARMER)
Loading times series and metadata of ground observations:
```{r Loading_GroundObservarions, eval = TRUE}
data(ecuador.tmax.zoo)
data(ecuador.tmax.stations.df)
Loading satellite-based/model-based datasets:
```{r LoadingSatelliteData, eval = TRUE} data(ecuador.tmax.wrf.out)
Running `VARMER`
```{r, eval = FALSE}
varmer.ts(x=ecuador.tmax.zoo, x.metadata=ecuador.tmax.stations.df,
v=ecuador.tmax.wrf.out, lat='LAT', lon='LON',
drty.out="~/Documentos/dataset_ecuador")
If you find an error in some function, or want to report a typo in the documentation, or to request a new feature (and wish it be implemented :) you can do write to lenin.gcta@gmail.com
.
To cite VARMER
in publications use:
Ulloa, J., Samaniego, E., Campozano, L., & Ballari, D. (2018). A variational merging approach to the spatial description of environmental variables. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1002/2017JD027982.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.