R/RcppExports.R

Defines functions MCMC_LOGIT_KEEP GET_EFFECT2 Sample1 Sample2 LIKE

Documented in LIKE MCMC_LOGIT_KEEP

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#' Obtains likelihood
#'
#' Calculates likelihood from observed outcome data and given covariate data/parameters.
#'
#' @param Y Binary outcome vector.
#' @param X Matrix of covariates.
#' @param beta0 Intercept parameter.
#' @param beta Vector of covariate parameters of length p.
#' @return Likelihood
#' @useDynLib VARSELECTEXPOSURE
#' @export
LIKE <- function(Y, X, beta0, beta) {
    .Call('_VARSELECTEXPOSURE_LIKE', PACKAGE = 'VARSELECTEXPOSURE', Y, X, beta0, beta)
}

Sample2 <- function(groupprob) {
    .Call('_VARSELECTEXPOSURE_Sample2', PACKAGE = 'VARSELECTEXPOSURE', groupprob)
}

Sample1 <- function(G) {
    .Call('_VARSELECTEXPOSURE_Sample1', PACKAGE = 'VARSELECTEXPOSURE', G)
}

GET_EFFECT2 <- function(B0, BE, BETA, X) {
    .Call('_VARSELECTEXPOSURE_GET_EFFECT2', PACKAGE = 'VARSELECTEXPOSURE', B0, BE, BETA, X)
}

#' Obtains posterior samples from an MCMC algorithm to perform variable selection.
#'
#' Performs posterior sampling from an MCMC algorithm to estimate average treatment effect and posterior probability of
#' inclusion of candidate variables.
#'
#' @param Y Binary outcome vector.
#' @param Z Matrix of covariates including binary exposure variable.
#' @param PIN Prior probability of inclusion of candidate variables.
#' @param MAX_COV Maximum number of covariates in desired model.
#' @param SdBeta Prior standard deviation for generating distrubtion of proposal coefficients.
#' @param NUM_REPS Number of MCMC iterations to perform.
#' @return List containing (1) the posterior distribution of the estimated Average Treatment Effect, (2) the
#'         posterior distributions of the intercept parameter, (3) the posterior distributions of the rest of the
#'         coefficients including the exposure coefficient, and (4) the posterior distribution for the indication
#'         of whether or not the variable was included in a given iteration's model.
#' @useDynLib VARSELECTEXPOSURE
#' @export
MCMC_LOGIT_KEEP <- function(Y, Z, PIN, MAX_COV, SdBeta, NUM_REPS) {
    .Call('_VARSELECTEXPOSURE_MCMC_LOGIT_KEEP', PACKAGE = 'VARSELECTEXPOSURE', Y, Z, PIN, MAX_COV, SdBeta, NUM_REPS)
}

Try the VARSELECTEXPOSURE package in your browser

Any scripts or data that you put into this service are public.

VARSELECTEXPOSURE documentation built on April 27, 2023, 5:09 p.m.