| VBel-package | R Documentation |
Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) <doi:10.1080/01621459.2023.2169701>.
Weichang Yu [aut] (ORCID: <https://orcid.org/0000-0002-0399-3779>), Jeremy Lim [cre, aut]
Maintainer: Jeremy Lim <jeremy.lim@unimelb.edu.au>
References: Yu, W., & Bondell, H. D. (2023), “Variational Bayes for Fast and Accurate Empirical Likelihood Inference”, Journal of the American Statistical Association, 119(546), 1089–1101. Page 3 \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1080/01621459.2023.2169701")}
compute_AEL() for C++ computation of AEL
compute_GVA() for C++ computation of GVA
diagnostic_plot() for verifying convergence of computed GVA data
#ansGVARcppPure <- compute_GVA(mu, C_0, h, delthh, delth_logpi, z, lam0, rho,
#elip, a, SGD_iters, AEL_iters)
#diagnostic_plot(ansGVARcppPure)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.