loop_lss | R Documentation |
loop_lss
is the EM loop function for the LSS model to be utilised by various other higher level functions
loop_lss(
alldat,
xiold,
omega2old,
nuold,
mean.ind,
var.ind,
nu.ind,
para.space,
maxit,
eps,
int.maxit,
print.it
)
alldat |
Dataframe containing all the data for the models. Outcome in the first column. |
xiold |
Vector of initial location parameter estimates to be fit in the location model. |
omega2old |
Vector of initial scale2 parameter estimates to be fit in the scale2 model. |
nuold |
Vector of initial nu parameter estimates to be fit in the nu model. |
mean.ind |
Vector containing the column numbers of the data in 'alldat' to be fit as covariates in the location model. |
var.ind |
Vector containing the column numbers of the data in 'alldat' to be fit as covariates in the scale2 model. FALSE indicates a constant variance model. |
nu.ind |
Vector containing the column numbers of the data in 'alldat' to be fit as covariates in the nu model. NULL indicates constant model. |
para.space |
Parameter space to search for variance parameter estimates. "positive" means only search positive parameter space, "negative" means search only negative parameter space and "all" means search all. |
maxit |
Number of maximum iterations for the main EM algorithm. |
eps |
Very small number for the convergence criteria. |
int.maxit |
Number of maximum iterations for the internal EM algorithm for the location and scale. |
print.it |
Logical to indicate if the estimates for each iteration should be printed. |
A list of the results from the algorithm, including conv, reldiff, it, mean, xi.new, omega2.new, nu.new, fitted.xi
conv
: Logical argument indicating if convergence occurred
it
: Total iterations performed of the EM algorithm
reldiff
: the positive convergence tolerance that occured at the final iteration
xinew
: Vector of location parameter estimates
omega2new
: Vector of scale squared parameter estimates
nunew
: Vector of shape parameter estimates
fitted.xi
: Vector of fitted location estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.