RayleighTest3D: Rayleigh Test. Formal test of uniformity.

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/RayleighTest3D.R

Description

This function performs the Rayleigh test of uniformity.

Usage

1
RayleighTest3D(coord, Alpha = 0.05)

Arguments

coord

Matrix containing the values of the coordinates

Alpha

Value used to obtain the Rayleigh Value from the chi-square table. The values can be 0.05, 0.025, 0.01, 0.005, 0.001, 0.0005. The default is 0.05.

Details

This test detects a single modal direction in a sample of angles when the mean angles is unspecified. The hypothesis of uniformity is rejected if the mean module is very large. This test assumes that a larger mean module implies a more concentration around the mean, and therefore less probability that the data is uniformly distributed.

One way to get a set of coordinates X, Y and Z of the origin position and end position (coordinates X, Y and Z of the vector) or of the colatitude and longitude, it is using the LoadData3D function.

Value

Returns the probability value, and indicates whether or not to accept the hypothesis of uniformity.

Author(s)

Ruiz-Cuetos, J.C., [email protected], Polo, M.E., [email protected], Rodriguez, P.G. [email protected]

References

Fisher N.I. , Lewis T. , Embleton, B.J.J. (1987) Statistical analysis of spherical data. Cambridge. Cambridge University Press.

Website http://gim.unex.es/VecStatGraphs3D/

See Also

AllAngleStatistics, AllModuleStatistics3D.

Examples

1
2
3
4
   FileName<-system.file("data/XYZcoor.txt", package="VecStatGraphs3D")
   dat<-LoadData3D(FileName, Type=1)
   coordinates<-dat[,4:6]
   RayleighTest3D(coordinates, Alpha = 0.05)

VecStatGraphs3D documentation built on May 29, 2017, 10:51 a.m.