| DenseEmbedder | R Documentation |
Generates dense vector embeddings using pre-trained word vectors
dimensionEmbedding dimension
model_typeType of model being used
languageLanguage setting ("en" or "ml")
new()Create a new DenseEmbedder
DenseEmbedder$new( dimension = 100, model_path = NULL, model_type = "tfidf", sentence_embedder = NULL, auto_download = FALSE, language = "en" )
dimensionVector dimension (default: 100 for word2vec, 50/100/200/300 for GloVe)
model_pathOptional path to pre-trained model file
model_typeType: "word2vec", "glove", "glove-pretrained", or "tfidf"
sentence_embedderOptional SentenceEmbedder object to use
auto_downloadAuto-download GloVe vectors if model_type is glove-pretrained
languageLanguage behavior ("en" = ASCII-focused, "ml" = Unicode-aware)
set_sentence_embedder()Set a SentenceEmbedder to use for embeddings
DenseEmbedder$set_sentence_embedder(embedder)
embedderSentenceEmbedder object
embed()Embed texts to vectors
DenseEmbedder$embed(texts)
textsCharacter vector of texts
Matrix of embeddings (rows are documents)
fit()Train embedder on corpus (for TF-IDF)
DenseEmbedder$fit(texts)
textsCharacter vector of training texts
clone()The objects of this class are cloneable with this method.
DenseEmbedder$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.