R/WaverideR.R

#' @name WaverideR
#' @title Extracting Signals from Wavelet Spectra
#' @description The continuous wavelet transform enables the observation of
#' transient/non-stationary cyclicity in time-series. The goal of
#'cyclostratigraphic studies is to define frequency/period in the
#'depth/time domain. By conducting the continuous wavelet transform
#'on cyclostratigraphic data series one can observe and extract cyclic
#'signals/signatures from signals. These results can then be visualized
#'and interpreted enabling one to identify/interpret cyclicity in the
#'geological record, which can be used to construct astrochronological
#'age-models and identify and interpret cyclicity in past and present
#'climate systems.
#'
#'@references
#'The 'WaverideR' package builds upon existing literature and existing codebase.
#'The following list of articles is relevant for the 'WaverideR' R package and
#'its functions. Individual articles are also cited in the descriptions of
#'function when relative for set function. The articles in the list below can
#'be grouped in four subjects: (1) Cyclostratigraphic data analysis, (2)
#'example data sets, (3) the (continuous) wavelet transform and (4)
#'astronomical solutions). For each of these categories the
#'relevance of set articles will be explained in the framework of
#'the 'WaverideR' R package.
#'
#'# 1. Cyclostratigraphic data analysis
#'
#'Stephen R. Meyers, Cyclostratigraphy and the problem of astrochronologic
#' testing, Earth-Science Reviews,Volume 190,2019,Pages 190-223,ISSN 0012-8252
#' \doi{10.1016/j.earscirev.2018.11.015} \cr
#' The 'astrochron' R package is the most extensive R package with regards to
#' cyclostratigraphic analysis. As such many of the functionalities of the
#' 'WaverideR' R package are #' inspired/based on the 'astrochron' R package.
#' The major difference between #' the 'astrochron' R package and the 'WaverideR'
#' package is that the #' astrochron' R package relies on the Fast Fourier Transform whereas
#'
#'S.R. Meyers, 2012, Seeing Red in Cyclic Stratigraphy: Spectral Noise
#'Estimation for Astrochronology: Paleoceanography, 27, PA3228,
#' \doi{10.1029/2012PA002307} \cr
#' The article of Meyers (2012) explains how the (Multitaper method) MTM technique
#' implemented into The 'astrochron' R package The MTM method can be used
#' to assign confidence levels to spectral peaks and distinguish spectral peaks
#' from harmonic spectral peaks.
#'
#'Acycle: Time-series analysis software for paleoclimate research and education,
#'Mingsong Li, Linda Hinnov, Lee Kump, Computers & Geosciences,Volume 127,2019,
#'Pages 12-22,ISSN 0098-3004, \doi{10.1016/j.cageo.2019.02.011} \cr
#'The 'Acycle' software package is a 'Matlab' based program, which is used for
#' cyclostratigraphic studies. Acycle relies mostly on the Fast Fourier Transform.
#' The 'Coco' and 'eCoco' functions from Acycle formed the inspiration for the
#' \link[WaverideR]{flmw} \link[WaverideR]{sum_power_sedrate} functions of the
#' ‘Waverider’ R package.
#'
#' Tracking variable sedimentation rates and astronomical forcing in Phanerozoic
#'  paleoclimate proxy series with evolutionary correlation coefficients and
#'  hypothesis testing, Mingsong Li, Lee R. Kump, Linda A. Hinnov, Michael
#'  E. Mann, Earth and Planetary Science Letters,Volume 501, 2018,Pages 165-179,
#'  ISSN 0012-821X, \doi{10.1016/j.epsl.2018.08.041} \cr
#'  Li et al., (2019) introduces the Coco and eCoco functions of the Acycle
#'  software package. the 'Coco' and 'eCoco' function of the 'Acycle' software
#'  are able to estimate the sedimentation rate based on spectral
#'  characteristics of astronomical cycles. The 'Coco' and 'eCoco' function and
#'  form the inspiration for the  \link[WaverideR]{flmw} and  \link[WaverideR]{sum_power_sedrate}
#'  functions of the 'WaverideR' Package.
#'
#'
#'  Wouters, S., Crucifix, M., Sinnesael, M., Da Silva, A.C., Zeeden, C.,
#'  Zivanovic, M., Boulvain, F., Devleeschouwer, X., 2022,
#'  "A decomposition approach to cyclostratigraphic signal processing".
#'  Earth-Science Reviews 225 (103894).\doi{10.1016/j.earscirev.2021.103894} \cr
#'  Wouters et al., (2022) introduces the Empirical Mode Decomposition (EMD) as
#'  part of the 'DecomposeR' R package. EMD is a non-Fast Fourier Transform
#'  based spectral analysis technique. The Hilbert transform function
#'  \link[DecomposeR]{inst.pulse} of this package is used in WaverideR
#'  functions \link[WaverideR]{extract_amplitude} and \link[WaverideR]{Hilbert_transform}.
#'
#'Wouters, S., Da Silva, A.-C., Boulvain, F., and Devleeschouwer, X.. 2021.
#'StratigrapheR: Concepts for Litholog Generation in R. The R Journal.
#' \doi{10.32614/RJ-2021-039} \cr
#' Wouters et al., (2021) introduces the \link[StratigrapheR]{StratigrapheR} R
#' package. This package contains functions which format, process, and plot lithologs.
#' The litholog format of Wouters et al., (2021) is used as the standardized input
#' format to convert lithologs to a time series format using the \link[WaverideR]{lithlog_disc}
#' function. The time series can then be analysed for the imprint of cycles.
#'
#' #'Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen,
#' and Karin Blank. 2009. "On Instantaneous Frequency". Advances in Adaptive
#' Data Analysis 01 (02): 177–229. \doi{10.1142/S1793536909000096} \cr
#' The Hilbert transform function \link[DecomposeR]{inst.pulse} of the 'DecomposeR'
#' R package is based on the work of Huang et al., (2009).
#'
#'Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatter plots.
#'Journal of the American Statistical Association. 74, 829–836. \doi{10.1080/01621459.1979.10481038} \cr
#'Cleveland (1979) explains how the robust locally weighted regression works
#' and how it can be used to smooth data sets. This theory is applied in the
#' \link[WaverideR]{loess_auto} function of the ‘WaverideR’ package.
#'
#'#'Hurvich, C.M., Simonoff, J.S., and Tsai, C.L. (1998), Smoothing Parameter
#' Selection in Nonparametric Regression Using an Improved Akaike Information
#' Criterion. Journal of the Royal Statistical Society B. 60, 271–293
#' \doi{10.1111/1467-9868.00125} \cr
#' Hurvich et al., (1998) explains how
#' the Improved Akaike Information Criterion can be used to optimally smooth data sets
#' This theory is applied in the \link[WaverideR]{loess_auto} function of the ‘WaverideR’ package.
#'
#'#'Golub, G., Heath, M. and Wahba, G. (1979). Generalized cross validation as
#'a method for choosing a good ridge parameter. Technometrics. 21, 215–224. \doi{10.2307/1268518}\cr
#'Golub et al., (1979) explains how the Generalized cross validation can be
#'used to optimally smooth data sets. This theory is applied in the \link[WaverideR]{loess_auto}
#'function of the ‘WaverideR’ package.
#'
#'# 2. Example data sets
#'
#'Damien Pas, Linda Hinnov, James E. (Jed) Day, Kenneth Kodama, Matthias Sinnesael, Wei Liu,
#'Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA),
#'Earth and Planetary Science Letters,
#'Volume 488,2018,Pages 102-114,ISSN 0012-821X,
#' \doi{10.1016/j.epsl.2018.02.010} \cr
#' The data set of Pas et al, (2018) is a
#' magnetic susceptibility data measured on the Fammennian aged shales of
#'the from the Illinois basin in the USA. The data set contains the imprint of
#'astronomical cycles in the a Paleozoic succession making it a good example for
#'times (250Ma) when no astronomical solutions are available.
#'
#'
#'Steinhilber, Friedhelm & Abreu, Jacksiel & Beer, Juerg & Brunner,
#'Irene & Christl, Marcus & Fischer, Hubertus & Heikkilä, U. & Kubik,
#' Peter & Mann, Mathias & Mccracken, K. & Miller, Heinrich & Miyahara,
#' Hiroko & Oerter, Hans & Wilhelms, Frank. (2012).
#' 9,400 Years of cosmic radiation and solar activity from ice cores and tree rings.
#' Proceedings of the National Academy of Sciences of the United States of America.
#' 109. 5967-71. 10.1073/pnas.1118965109.
#' \doi{10.1073/pnas.1118965109} \cr
#'The Total Solar Irradiance record of Steinhilber et al., (2012) is a Holocene record of normalized
#'Total Solar Irradiance in the time domain. The data set is a good example for
#'studying/extracting sub-Milankovitch 5000yr from a relatively (geologically) speaking young record.
#'
#' Christian Zeeden, Frederik Hilgen, Thomas Westerhold, Lucas Lourens, Ursula Röhl, Torsten Bickert,
#' Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4Ma,
#' Palaeogeography, Palaeoclimatology, Palaeoecology,Volume 369,2013,Pages 430-451,ISSN 0031-0182,
#' 10.1016/j.palaeo.2012.11.009\cr
#' The record of Zeeden et al., (2013) consists of a grey scale record from Miocene sediment cores from offshore
#' Brazil. The record contains a clear imprint of astronomical cycles as such it is a good Neogene example data set
#' to demonstrate the functionalities of the 'WaverideR' R package
#'
#'# 3. The (continuous) wavelet transform
#'
#'Morlet, Jean, Georges Arens, Eliane Fourgeau, and Dominique Glard.
#'"Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media.
#'" Geophysics 47, no. 2 (1982): 203-221.
#' \url{https://pubs.geoscienceworld.org/geophysics/article/47/2/203/68601/Wave-propagation-and-sampling-theory-Part-I}\cr
#' Morlet et al., (1982a) together with Morlet et al., (1982b) are the original publications which explain the
#' use of the wavelet to analyse signal.
#'
#'J. Morlet, G. Arens, E. Fourgeau, D. Giard;
#' Wave propagation and sampling theory; Part II, Sampling theory and complex waves.
#' Geophysics 1982 47 (2): 222–236. \url{https://pubs.geoscienceworld.org/geophysics/article/47/2/222/68604/Wave-propagation-and-sampling-theory-Part-II}\cr
#' Morlet et al., (1982a) together with Morlet et al., (1982b) are the original publications which explain the
#' use of the wavelet to analyse signal.
#'
#'Torrence, C., and G. P. Compo. 1998. A Practical Guide to Wavelet Analysis.
#'Bulletin of the American Meteorological Society 79:61-78.
#'\url{https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf} \cr
#''Torrence and Compo (1998) shows how the continuous wavelet transform can be used to analyse
#'cyclicity in paleo-climatic data-sets. The equations in this publication forms the basis for many
#'wavelet based packages/software applications.
#'
#'Gouhier TC, Grinsted A, Simko V (2021).
#'R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. (Version 0.20.21),
#'\url{https://github.com/tgouhier/biwavelet}\cr
#'Gouhier et al., (2021) is the implementation of equations of Torrence and Compo (1998) in the form of the
#''biwavelet' R package
#'
#'Angi Roesch and Harald Schmidbauer (2018). WaveletComp: Computational
#'Wavelet Analysis. R package version 1.1.
#'\url{https://CRAN.R-project.org/package=WaveletComp}\cr
#'Roesch and Schmidbauer et al., (2018) is the article of the 'WaveletComp' R package which
#'is a built upon the functionalities of the 'biwavelet' R package
#'
#'Russell, Brian, and Jiajun Han. "Jean Morlet and the continuous wavelet transform.
#'" CREWES Res. Rep 28 (2016): 115. \url{https://www.crewes.org/Documents/ResearchReports/2016/CRR201668.pdf}\cr
#'Russell and Han (2016) gives a concise summary of the work of Morlet et al., (1982a) and Morlet et al., (1982b) and the
#'developments since then. The publication also describes how the Gabor uncertainty principle (Gabor 1946) affects the frequency
#'uncertainty of the wavelet which can be used to calculate the analytical uncertainty of a given wavelet spectra.
#'
#'Gabor, Dennis. "Theory of communication. Part 1: The analysis of information."
#' Journal of the Institution of Electrical Engineers-part III: radio and
#' communication engineering 93, no. 26 (1946): 429-441. \url{http://genesis.eecg.toronto.edu/gabor1946.pdf}\cr
#'Gabor (1946) describes the Gabor uncertainty principle which states how the uncertainty in time and frequency are related
#'in time series analysis.
#'
#'# 4. Astronomical solutions
#'
#'J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A.C.M. Correia, and B. Levrard, B., 2004,
#'A long term numerical solution for the insolation quantities of the Earth: Astron. Astrophys.,
#' Volume 428, 261-285. \doi{10.1051/0004-6361:20041335}\cr
#' Laskar et al., (2004) is an astronomical solution which can be used to anchor geological data to absolute ages.
#'
#'Laskar, J., Fienga, A., Gastineau, M., Manche, H., 2011a,
#' La2010: A new orbital solution for the long-term motion of the Earth: Astron. Astrophys.,
#' Volume 532, A89 \doi{10.1051/0004-6361/201116836}\cr
#'Laskar et al., (2011a) is an astronomical solution which can be used to anchor geological data to absolute ages.
#'
#'Laskar, J., Gastineau, M., Delisle, J.-B., Farres, A., Fienga, A.:
#'2011b, Strong chaos induced by close encounters with Ceres and Vesta, Astron: Astrophys.,
#'Volume 532, L4.  \doi{10.1051/0004-6361/201117504}\cr
#'Laskar et al., (2011b) is an astronomical solution which can be used to anchor geological data to absolute ages.
#'
#'J. Laskar,Chapter 4 - Astrochronology,Editor(s): Felix M. Gradstein, James G. Ogg, Mark D. Schmitz, Gabi M. Ogg,Geologic Time Scale 2020,Elsevier,2020,Pages 139-158,ISBN 9780128243602,
#' '\doi{10.1016/B978-0-12-824360-2.00004-8}\cr
#'Laskar et al., (2019) explains how astronomical solutions are created and how they should/can be used
#'
#'Zeebe, Richard E. "Numerical solutions for the orbital motion of the Solar System over the past 100 Myr: limits and new results."
#'The Astronomical Journal 154, no. 5 (2017): 193. \doi{10.3847/1538-3881/aa8cce} \cr
#'Zeebe (2017) is an astronomical solution which can be used to anchor geological data to absolute ages.
#'
#'Richard E. Zeebe Lucas J. Lourens ,Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy.Science365,926-929(2019)
#'\doi{10.1126/science.aax0612}\cr
#'Zeebe and Lourens (2019) is an astronomical solution which can be used to anchor geological data to absolute ages.
#'
#'Zeebe, R. E. and Lourens, L. J.
#'Geologically constrained astronomical solutions for the Cenozoic era,
#'Earth and Planetary Science Letters, 2022 \doi{10.1016/j.epsl.2022.117595} \cr
#'Zeebe and Lourens (2022) is an astronomical solution which can be used to anchor geological data to absolute ages.
#'
#'
#' @details Package: 'WaverideR'
#'
#' Type: R package
#'
#' Version: 0.3.2 (begin of 2023)
#'
#' License: GPL (= 2)
#'
#' @note
#' If you want to use this package for publication or research
#' purposes, please cite:
#'
#' Arts, M.C.M (2023).
#' WaverideR: Extracting Signals from Wavelet Spectra.
#' https://CRAN.R-project.org/package=WaverideR
#'
#' @author Michiel Arts
#'
#' Maintainer: Michiel Arts \email{michiel.arts@stratigraphy.eu}
NULL

Try the WaverideR package in your browser

Any scripts or data that you put into this service are public.

WaverideR documentation built on Sept. 8, 2023, 5:52 p.m.