WeMix: Weighted Mixed-Effects Models Using Multilevel Pseudo Maximum Likelihood Estimation

Run mixed-effects models that include weights at every level. The WeMix package fits a weighted mixed model, also known as a multilevel, mixed, or hierarchical linear model (HLM). The weights could be inverse selection probabilities, such as those developed for an education survey where schools are sampled probabilistically, and then students inside of those schools are sampled probabilistically. Although mixed-effects models are already available in R, WeMix is unique in implementing methods for mixed models using weights at multiple levels. Both linear and logit models are supported. Models may have up to three levels.

Package details

AuthorPaul Bailey [aut, cre], Claire Kelley [aut], Trang Nguyen [aut], Huade Huo [aut], Christian Kjeldsen [ctb] (tests with TIMSS data).
MaintainerPaul Bailey <[email protected]>
LicenseGPL-2
Version3.1.3
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("WeMix")

Try the WeMix package in your browser

Any scripts or data that you put into this service are public.

WeMix documentation built on Jan. 9, 2020, 1:06 a.m.