aamatch-package | R Documentation |
Implements a simple version of multivariate matching using a propensity score, near-exact matching, near-fine balance, and robust Mahalanobis distance matching (Rosenbaum 2020 <doi:10.1146/annurev-statistics-031219-041058>). You specify the variables, and the program does everything else.
Package aamatch implements a simple version of multivariate matching in observational studies, using propensity scores, minimum distance matching, near-exact matching and fine balance. The only function in the package is artless().
Paul Rosenbaum [aut, cre]
Maintainer: Paul Rosenbaum <rosenbaum@wharton.upenn.edu>
Rosenbaum, P. R. (2020a) <doi:10.1007/978-3-030-46405-9> Design of Observational Studies (2nd Edition). New York: Springer.
Rosenbaum, P. R. (2020b). <doi:10.1146/annurev-statistics-031219-041058> Modern algorithms for matching in observational studies. Annual Review of Statistics and Its Application, 7(1), 143-176.
Rosenbaum, P. R. (2025) Introduction to the Theory of Observational Studies. New York: Springer.
Zhang, B., D. S. Small, K. B. Lasater, M. McHugh, J. H. Silber, and P. R. Rosenbaum (2023) <doi:10.1080/01621459.2021.1981337> Matching one sample according to two criteria in observational studies. Journal of the American Statistical Association, 118, 1140-1151.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.