cc_inference | R Documentation |
For each pairs of components, it computes p-values to test the null hypothesis of no correlation between components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, 220, 117065. https://doi.org/10.1016/j.neuroimage.2020.117065.
cc_inference( mod, B = 100, alpha_max = 0.5, numb_cc = NULL, resamp_type = "sign-flip", light = FALSE )
mod |
an |
B |
( |
alpha_max |
stop if p-value > alpha_max ( |
numb_cc |
stop after computing p-values for the first |
resamp_type |
|
light |
If |
It returns an acca
object (see cc
) with p-values for each pair of the numb_cc
components.
set.seed(1) X=matrix(rnorm(500),100,5) Y=matrix(rnorm(700),100,7) Z=matrix(rnorm(200),100,2) mod=cc(X,Y,Z) mod ccbiplot(mod) mod=cc_inference(mod, B = 100, numb_cc = 3) mod
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.