adaHuber.mean | R Documentation |
Adaptive Huber mean estimator from a data sample, with robustification parameter τ determined by a tuning-free principle.
adaHuber.mean(X, epsilon = 1e-04, iteMax = 500)
X |
An n-dimensional data vector. |
epsilon |
(optional) The tolerance level in the iterative estimation procedure, iteration will stop when |μ_new - μ_old| < ε. The defalut value is 1e-4. |
iteMax |
(optional) Maximum number of iterations. Default is 500. |
A list including the following terms will be returned:
mu
The Huber mean estimator.
tau
The robustness parameter determined by the tuning-free principle.
iteration
The number of iterations in the estimation procedure.
Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist., 35, 73–101.
Wang, L., Zheng, C., Zhou, W. and Zhou, W.-X. (2021). A new principle for tuning-free Huber regression. Stat. Sinica, 31, 2153-2177.
n = 1000 mu = 2 X = rt(n, 2) + mu fit.mean = adaHuber.mean(X) fit.mean$mu
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.