View source: R/importanceplot.R
importanceplot | R Documentation |
Plots the relative importance of each variable in the classification task. This measure takes into account the gain of the Gini index given by a variable in a tree and, in the boosting case, the weight of this tree.
importanceplot(object, ...)
object |
fitted model object of class |
... |
further arguments passed to or from other methods. |
For this goal, the varImp
function of the caret
package is used to get
the gain of the Gini index of the variables in each tree.
A labeled plot is produced on the current graphics device (one being opened if needed).
Esteban Alfaro-Cortes Esteban.Alfaro@uclm.es, Matias Gamez-Martinez Matias.Gamez@uclm.es and Noelia Garcia-Rubio Noelia.Garcia@uclm.es
Alfaro, E., Gamez, M. and Garcia, N. (2013): “adabag: An R Package for Classification with Boosting and Bagging”. Journal of Statistical Software, Vol 54, 2, pp. 1–35.
Alfaro, E., Garcia, N., Gamez, M. and Elizondo, D. (2008): “Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks”. Decision Support Systems, 45, pp. 110–122.
Breiman, L. (1996): “Bagging predictors”. Machine Learning, Vol 24, 2, pp.123–140.
Freund, Y. and Schapire, R.E. (1996): “Experiments with a new boosting algorithm”. In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156, Morgan Kaufmann.
Zhu, J., Zou, H., Rosset, S. and Hastie, T. (2009): “Multi-class AdaBoost”. Statistics and Its Interface, 2, pp. 349–360.
boosting
,
bagging
,
#Examples
#Iris example
library(rpart)
data(iris)
sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
iris.adaboost <- boosting(Species ~ ., data=iris[sub,], mfinal=3)
importanceplot(iris.adaboost)
#Examples with bagging
#iris.bagging <- bagging(Species ~ ., data=iris[sub,], mfinal=5)
#importanceplot(iris.bagging, horiz=TRUE, cex.names=.6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.