Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(adaptDiag)
ss <- binom_sample_size(alpha = 0.05, power = 0.9, p0 = 0.7, p1 = 0.824)
ss
## ----p_thresh-----------------------------------------------------------------
p_thresh <- seq(0.95, 0.995, 0.005)
## ----simulate, eval=FALSE-----------------------------------------------------
# tab <- NULL
#
# for (i in 1:length(p_thresh)) {
# fit_p <- multi_trial(
# sens_true = 0.7,
# spec_true = 0.963,
# prev_true = 0.20,
# endpoint = "sens",
# sens_pg = 0.7,
# spec_pg = NULL,
# prior_sens = c(0.1, 0.1),
# prior_spec = c(0.1, 0.1),
# prior_prev = c(0.1, 0.1),
# succ_sens = p_thresh[i],
# n_at_looks = seq(100, 600, 50),
# n_mc = 10000,
# n_trials = 5000,
# ncores = 8L)
#
# out <- summarise_trials(fit_p, min_pos = 35, fut = 0.05)
# tab <- rbind(tab, out)
# }
## ----load_results, echo=FALSE-------------------------------------------------
load("vignette-sims.rda")
## ----results, fig.height=5, fig.width=5---------------------------------------
plot(p_thresh, tab$power,
xlab = "Probability success threshold",
ylab = "Type I error",
main = "",
type = "b",
bty = "n")
grid()
abline(h = 0.05, col = 2)
abline(h = 0.05 + 1.96 * sqrt(0.05 * 0.95 / 5000),
col = 2, lty = 2)
abline(h = 0.05 - 1.96 * sqrt(0.05 * 0.95 / 5000),
col = 2, lty = 2)
## ----simulate_power, eval=FALSE-----------------------------------------------
# power <- multi_trial(
# sens_true = 0.824,
# spec_true = 0.963,
# prev_true = 0.20,
# endpoint = "sens",
# sens_pg = 0.7,
# spec_pg = NULL,
# prior_sens = c(0.1, 0.1),
# prior_spec = c(0.1, 0.1),
# prior_prev = c(0.1, 0.1),
# succ_sens = 0.985,
# n_at_looks = seq(100, 600, 50),
# n_mc = 10000,
# n_trials = 5000,
# ncores = 8L)
## -----------------------------------------------------------------------------
summarise_trials(power, min_pos = 35, fut = 0.05)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.