tests/testthat/_snaps/check_performance.md

valid parameters work

Code
  check_performance(res)
Output
                metric      est
  1       n_summarised   20.000
  2          size_mean 1250.000
  3            size_sd  551.076
  4        size_median 1200.000
  5           size_p25  850.000
  6           size_p75 1675.000
  7            size_p0  400.000
  8          size_p100 2000.000
  9        sum_ys_mean  282.000
  10         sum_ys_sd  125.760
  11     sum_ys_median  269.500
  12        sum_ys_p25  186.750
  13        sum_ys_p75  384.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  472.000
  16     ratio_ys_mean    0.226
  17       ratio_ys_sd    0.012
  18   ratio_ys_median    0.221
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.231
  21       ratio_ys_p0    0.215
  22     ratio_ys_p100    0.270
  23   prob_conclusive    0.800
  24     prob_superior    0.650
  25  prob_equivalence    0.150
  26     prob_futility    0.000
  27          prob_max    0.200
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    0.650
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.350
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, uncertainty = FALSE)
Output
                metric      est
  1       n_summarised   20.000
  2          size_mean 1250.000
  3            size_sd  551.076
  4        size_median 1200.000
  5           size_p25  850.000
  6           size_p75 1675.000
  7            size_p0  400.000
  8          size_p100 2000.000
  9        sum_ys_mean  282.000
  10         sum_ys_sd  125.760
  11     sum_ys_median  269.500
  12        sum_ys_p25  186.750
  13        sum_ys_p75  384.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  472.000
  16     ratio_ys_mean    0.226
  17       ratio_ys_sd    0.012
  18   ratio_ys_median    0.221
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.231
  21       ratio_ys_p0    0.215
  22     ratio_ys_p100    0.270
  23   prob_conclusive    0.800
  24     prob_superior    0.650
  25  prob_equivalence    0.150
  26     prob_futility    0.000
  27          prob_max    0.200
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    0.650
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.350
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, uncertainty = TRUE, boot_seed = 4131, n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   20.000   0.000   0.000   20.000   20.000
  2          size_mean 1250.000 115.920 129.727 1031.875 1462.625
  3            size_sd  551.076  58.032  59.628  415.681  653.692
  4        size_median 1200.000 166.978 148.260  973.750 1600.000
  5           size_p25  850.000 189.979 222.390  500.000 1176.250
  6           size_p75 1675.000 231.369 352.118 1236.875 2000.000
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 2000.000      NA      NA       NA       NA
  9        sum_ys_mean  282.000  26.300  27.132  232.823  330.822
  10         sum_ys_sd  125.760  13.762  14.130   95.505  146.682
  11     sum_ys_median  269.500  38.722  39.289  210.275  357.987
  12        sum_ys_p25  186.750  38.798  45.590  129.819  260.275
  13        sum_ys_p75  384.000  50.837  58.192  276.794  462.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  472.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.226   0.003   0.003    0.222    0.232
  17       ratio_ys_sd    0.012   0.004   0.005    0.005    0.019
  18   ratio_ys_median    0.221   0.003   0.002    0.220    0.229
  19      ratio_ys_p25    0.220   0.001   0.001    0.216    0.221
  20      ratio_ys_p75    0.231   0.004   0.004    0.222    0.235
  21       ratio_ys_p0    0.215      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    0.800   0.087   0.074    0.624    0.950
  24     prob_superior    0.650   0.103   0.111    0.450    0.800
  25  prob_equivalence    0.150   0.079   0.074    0.000    0.300
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.200   0.087   0.074    0.050    0.376
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    0.650   0.103   0.111    0.450    0.800
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.350   0.103   0.111    0.200    0.550
  32              rmse    0.020   0.004   0.003    0.011    0.026
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.005    0.025
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000
Code
  check_performance(res, uncertainty = TRUE, ci_width = 0.75, boot_seed = 4131,
    n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   20.000   0.000   0.000   20.000   20.000
  2          size_mean 1250.000 115.920 129.727 1116.875 1383.125
  3            size_sd  551.076  58.032  59.628  471.321  600.569
  4        size_median 1200.000 166.978 148.260 1000.000 1400.000
  5           size_p25  850.000 189.979 222.390  600.000 1000.000
  6           size_p75 1675.000 231.369 352.118 1418.750 2000.000
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 2000.000      NA      NA       NA       NA
  9        sum_ys_mean  282.000  26.300  27.132  252.144  313.913
  10         sum_ys_sd  125.760  13.762  14.130  106.971  138.581
  11     sum_ys_median  269.500  38.722  39.289  220.000  303.000
  12        sum_ys_p25  186.750  38.798  45.590  135.000  220.000
  13        sum_ys_p75  384.000  50.837  58.192  314.719  433.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  472.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.226   0.003   0.003    0.223    0.229
  17       ratio_ys_sd    0.012   0.004   0.005    0.006    0.016
  18   ratio_ys_median    0.221   0.003   0.002    0.220    0.225
  19      ratio_ys_p25    0.220   0.001   0.001    0.218    0.220
  20      ratio_ys_p75    0.231   0.004   0.004    0.225    0.235
  21       ratio_ys_p0    0.215      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    0.800   0.087   0.074    0.700    0.900
  24     prob_superior    0.650   0.103   0.111    0.500    0.750
  25  prob_equivalence    0.150   0.079   0.074    0.050    0.250
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.200   0.087   0.074    0.100    0.300
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    0.650   0.103   0.111    0.500    0.750
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.350   0.103   0.111    0.250    0.500
  32              rmse    0.020   0.004   0.003    0.014    0.023
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.007    0.018
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000
Code
  check_performance(res, restrict = "superior")
Output
                metric      est
  1       n_summarised   13.000
  2          size_mean 1084.615
  3            size_sd  493.028
  4        size_median 1200.000
  5           size_p25  600.000
  6           size_p75 1400.000
  7            size_p0  400.000
  8          size_p100 1900.000
  9        sum_ys_mean  244.000
  10         sum_ys_sd  107.973
  11     sum_ys_median  266.000
  12        sum_ys_p25  135.000
  13        sum_ys_p75  303.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  420.000
  16     ratio_ys_mean    0.227
  17       ratio_ys_sd    0.014
  18   ratio_ys_median    0.222
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.228
  21       ratio_ys_p0    0.216
  22     ratio_ys_p100    0.270
  23   prob_conclusive    1.000
  24     prob_superior    1.000
  25  prob_equivalence    0.000
  26     prob_futility    0.000
  27          prob_max    0.000
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    1.000
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.000
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, restrict = "selected")
Output
                metric      est
  1       n_summarised   13.000
  2          size_mean 1084.615
  3            size_sd  493.028
  4        size_median 1200.000
  5           size_p25  600.000
  6           size_p75 1400.000
  7            size_p0  400.000
  8          size_p100 1900.000
  9        sum_ys_mean  244.000
  10         sum_ys_sd  107.973
  11     sum_ys_median  266.000
  12        sum_ys_p25  135.000
  13        sum_ys_p75  303.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  420.000
  16     ratio_ys_mean    0.227
  17       ratio_ys_sd    0.014
  18   ratio_ys_median    0.222
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.228
  21       ratio_ys_p0    0.216
  22     ratio_ys_p100    0.270
  23   prob_conclusive    1.000
  24     prob_superior    1.000
  25  prob_equivalence    0.000
  26     prob_futility    0.000
  27          prob_max    0.000
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    1.000
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.000
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, restrict = "superior", uncertainty = TRUE, boot_seed = "base",
    n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   13.000   1.859   1.483    9.000   17.000
  2          size_mean 1084.615 123.986 130.963  849.643 1305.357
  3            size_sd  493.028  64.548  69.102  347.577  597.946
  4        size_median 1200.000 231.802   0.000  600.000 1376.250
  5           size_p25  600.000 244.294 148.260  500.000 1200.000
  6           size_p75 1400.000 172.379 148.260 1200.000 1639.375
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 1900.000      NA      NA       NA       NA
  9        sum_ys_mean  244.000  27.085  28.637  193.007  292.815
  10         sum_ys_sd  107.973  13.743  13.825   75.508  129.319
  11     sum_ys_median  266.000  50.890  10.378  135.000  301.100
  12        sum_ys_p25  135.000  50.145  23.351  110.000  265.762
  13        sum_ys_p75  303.000  38.952  26.872  266.000  372.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  420.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.227   0.004   0.004    0.221    0.236
  17       ratio_ys_sd    0.014   0.006   0.006    0.003    0.022
  18   ratio_ys_median    0.222   0.003   0.001    0.220    0.229
  19      ratio_ys_p25    0.220   0.001   0.001    0.218    0.222
  20      ratio_ys_p75    0.228   0.008   0.004    0.222    0.253
  21       ratio_ys_p0    0.216      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    1.000   0.000   0.000    1.000    1.000
  24     prob_superior    1.000   0.000   0.000    1.000    1.000
  25  prob_equivalence    0.000   0.000   0.000    0.000    0.000
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.000   0.000   0.000    0.000    0.000
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    1.000   0.000   0.000    1.000    1.000
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.000   0.000   0.000    0.000    0.000
  32              rmse    0.020   0.003   0.004    0.013    0.025
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.006    0.025
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000
Code
  check_performance(res, restrict = "selected", uncertainty = TRUE, boot_seed = "base",
    n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   13.000   1.859   1.483    9.000   17.000
  2          size_mean 1084.615 123.986 130.963  849.643 1305.357
  3            size_sd  493.028  64.548  69.102  347.577  597.946
  4        size_median 1200.000 231.802   0.000  600.000 1376.250
  5           size_p25  600.000 244.294 148.260  500.000 1200.000
  6           size_p75 1400.000 172.379 148.260 1200.000 1639.375
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 1900.000      NA      NA       NA       NA
  9        sum_ys_mean  244.000  27.085  28.637  193.007  292.815
  10         sum_ys_sd  107.973  13.743  13.825   75.508  129.319
  11     sum_ys_median  266.000  50.890  10.378  135.000  301.100
  12        sum_ys_p25  135.000  50.145  23.351  110.000  265.762
  13        sum_ys_p75  303.000  38.952  26.872  266.000  372.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  420.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.227   0.004   0.004    0.221    0.236
  17       ratio_ys_sd    0.014   0.006   0.006    0.003    0.022
  18   ratio_ys_median    0.222   0.003   0.001    0.220    0.229
  19      ratio_ys_p25    0.220   0.001   0.001    0.218    0.222
  20      ratio_ys_p75    0.228   0.008   0.004    0.222    0.253
  21       ratio_ys_p0    0.216      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    1.000   0.000   0.000    1.000    1.000
  24     prob_superior    1.000   0.000   0.000    1.000    1.000
  25  prob_equivalence    0.000   0.000   0.000    0.000    0.000
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.000   0.000   0.000    0.000    0.000
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    1.000   0.000   0.000    1.000    1.000
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.000   0.000   0.000    0.000    0.000
  32              rmse    0.020   0.003   0.004    0.013    0.025
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.006    0.025
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000


Try the adaptr package in your browser

Any scripts or data that you put into this service are public.

adaptr documentation built on May 29, 2024, 7:48 a.m.