knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(admiraldev)
This article describes creating a vital signs ADaM for metabolic clinical trials.
We advise you first consult the {admiral}
Creating a BDS Finding ADaM
vignette.
The programming workflow around creating the general set-up of an ADVS
using {admiral}
functions is the same. In this vignette, we focus on
the most common endpoints and their derivations mainly found in
metabolic trials to avoid repeating information and maintaining the same
content in two places. As such, the code in this vignette is not
completely executable; we recommend consulting the ADVS template script
to view the full workflow.
The examples of this vignette require the following packages.
library(admiral) library(admiralmetabolic) library(pharmaversesdtm) library(dplyr)
PARAMCD
, PARAM
, PARAMN
, PARCAT1
To start, all data frames needed for the creation of ADVS
should be
loaded into the global environment. Reading data will usually be a
company specific process, however, for the purpose of this vignette, we
will use example data from {pharmaversesdtm}
and {admiralmetabolic}
. We will
utilize DM
, VS
and ADSL
for the basis of ADVS
.
dm_metabolic <- pharmaversesdtm::dm_metabolic vs_metabolic <- pharmaversesdtm::vs_metabolic admiralmetabolic_adsl <- admiralmetabolic::admiralmetabolic_adsl dm <- convert_blanks_to_na(dm_metabolic) vs <- convert_blanks_to_na(vs_metabolic) adsl <- convert_blanks_to_na(admiralmetabolic_adsl)
The following steps are to merge ADSL
variables with the source data
and derive the usual ADVS
analysis variables. Note that only the
sections required for this vignette are covered in the following steps.
To get a detailed guidance on all the steps, refer the {admiral}
Creating a BDS Finding ADaM
vignette.
adsl_vars <- exprs(TRTSDT, TRTEDT, TRT01P, TRT01A) advs <- derive_vars_merged( vs, dataset_add = adsl, new_vars = adsl_vars, by_vars = exprs(STUDYID, USUBJID) ) advs <- derive_vars_dt(advs, new_vars_prefix = "A", dtc = VSDTC) advs <- derive_vars_dy(advs, reference_date = TRTSDT, source_vars = exprs(ADT))
PARAMCD
, PARAM
, PARAMN
, PARCAT1
variables {#paramcd}The next step is to create and assign parameter level variables such as
PARAMCD
, PARAM
, PARAMN
, PARCAT1
, etc. For this, a lookup can be
created based on the SDTM --TESTCD
value to join to the source data.
One key addition in metabolic trials are vital sign parameters
associated to body measurements, such as BMI
, HIPCIR
, and WSTCIR
.
param_lookup <- tribble( ~VSTESTCD, ~PARAMCD, ~PARAM, ~PARAMN, ~PARCAT1, ~PARCAT1N, "HEIGHT", "HEIGHT", "Height (cm)", 1, "Anthropometric Measurement", 1, "WEIGHT", "WEIGHT", "Weight (kg)", 2, "Anthropometric Measurement", 1, "BMI", "BMI", "Body Mass Index(kg/m^2)", 3, "Anthropometric Measurement", 1, "HIPCIR", "HIPCIR", "Hip Circumference (cm)", 4, "Anthropometric Measurement", 1, "WSTCIR", "WSTCIR", "Waist Circumference (cm)", 5, "Anthropometric Measurement", 1, "DIABP", "DIABP", "Diastolic Blood Pressure (mmHg)", 6, "Vital Sign", 2, "PULSE", "PULSE", "Pulse Rate (beats/min)", 7, "Vital Sign", 2, "SYSBP", "SYSBP", "Systolic Blood Pressure (mmHg)", 8, "Vital Sign", 2, "TEMP", "TEMP", "Temperature (C)", 9, "Vital Sign", 2 )
This lookup may now be joined to the source data and this is how the parameters will look like:
advs <- derive_vars_merged_lookup( advs, dataset_add = param_lookup, new_vars = exprs(PARAMCD, PARAM, PARAMN, PARCAT1, PARCAT1N), by_vars = exprs(VSTESTCD) )
advs_param <- distinct(advs, USUBJID, PARAMCD, VSTESTCD, PARAM, PARCAT1, PARCAT1N) dataset_vignette(advs_param, display_vars = exprs(USUBJID, VSTESTCD, PARAMCD, PARAM, PARCAT1, PARCAT1N))
advs <- mutate( advs, AVAL = VSSTRESN )
In clinical trials focused on metabolic conditions, it's common to derive additional parameters from the collected data. These derived parameters often provide valuable insights into the metabolic health of the subjects. In this vignette, we will explore how one could derive BMI and waist-hip ratio.
In metabolic trials, BMI
is often calculated at source. But while
creating the ADVS
dataset, we re-derive BMI
from the collected
height and weight values. This is done to ensure that the BMI
is
calculated consistently across all subjects and visits.
In this step, we create parameter Body Mass Index (BMI
) for the ADVS
domain using the derive_param_bmi()
function. Note that only variables
specified in the by_vars
argument will be populated in the newly
created records. Also note that if height is collected only once for a
subject use constant_by_vars
to specify the function to merge by the
subject-level variable - otherwise BMI is only calculated for visits
where both are collected.
# Remove BMI collected in SDTM advs <- advs %>% filter(VSTESTCD != "BMI" | is.na(VSTESTCD)) # Re-calculate BMI advs <- derive_param_bmi( advs, by_vars = c( get_admiral_option("subject_keys"), exprs(!!!adsl_vars, VISIT, VISITNUM, ADT, ADY, VSTPT, VSTPTNUM) ), set_values_to = exprs( PARAMCD = "BMI", PARAM = "Body Mass Index (kg/m^2)", PARAMN = 3, PARCAT1 = "Anthropometric Measurement", PARCAT1N = 1 ), get_unit_expr = VSSTRESU, constant_by_vars = exprs(USUBJID) )
dataset_vignette( arrange(advs, USUBJID, VISITNUM, VSTPTNUM, ADT, PARAMCD), display_vars = exprs(USUBJID, VSTESTCD, PARAMCD, PARAM, VISIT, AVAL), filter = PARAMCD %in% c("BMI") )
advs <- restrict_derivation( advs, derivation = derive_var_extreme_flag, args = params( by_vars = c(get_admiral_option("subject_keys"), exprs(PARAMCD)), order = exprs(ADT, VSTPTNUM, VISITNUM), new_var = ABLFL, mode = "last" ), filter = (!is.na(AVAL) & ADT <= TRTSDT) ) advs <- derive_var_base( advs, by_vars = c(get_admiral_option("subject_keys"), exprs(PARAMCD)), source_var = AVAL, new_var = BASE ) advs <- derive_var_chg(advs) advs <- derive_var_pchg(advs)
Metabolic trials often include ratios between different anthropometric
measurements. For this,
{admiralmetabolic}
provides several functions to quickly calculate various anthropometric
ratios. For instance, the function
derive_param_waisthip()
can be used to derive the waist-hip ratio.
advs <- advs %>% derive_param_waisthip( by_vars = exprs(!!!get_admiral_option("subject_keys"), VISIT, VISITNUM), wstcir_code = "WSTCIR", hipcir_code = "HIPCIR", set_values_to = exprs( PARAMCD = "WAISTHIP", PARAM = "Waist to Hip Ratio" ), get_unit_expr = VSSTRESU )
dataset_vignette( arrange(advs, USUBJID, VISITNUM, VSTPTNUM, PARAMCD), display_vars = exprs(USUBJID, PARAMCD, PARAM, VISIT, AVAL), filter = PARAMCD %in% c("WAISTHIP") & USUBJID %in% c("01-701-1033", "01-701-1034") & VISITNUM %in% c(3, 10, 11, 12, 13) )
In the following sections, we will explore some of the most common endpoints typically observed in metabolic trials.
One such endpoint is the improvement in weight category from baseline to
the end of treatment, which is often assessed using Body Mass Index
(BMI
). To capture this, we will derive variables such as AVALCATy
and BASECATy
, as detailed in the subsequent section.
Additionally, the achievement of weight reduction thresholds, such as >=
5%, >= 10%, or >= 15% from baseline to end of treatment or at a certain visit,
is a common endpoint in metabolic trials. To accommodate these criteria,
we will derive relevant criterion variables such as CRITy
, CRITyFL
,
and CRITyFLN
, with the necessary functions provided by {admiral}
outlined below.
AVALCATy
, BASECATy
)For deriving categorization variables (AVALCATy
, BASECATy
)
{admiral}
provides
derive_vars_cat()
(see documentation of the function for details).
avalcat_lookup <- exprs( ~PARAMCD, ~condition, ~AVALCAT1, ~AVALCA1N, "BMI", AVAL < 18.5, "Underweight", 1, "BMI", AVAL >= 18.5 & AVAL < 25, "Normal weight", 2, "BMI", AVAL >= 25 & AVAL < 30, "Overweight", 3, "BMI", AVAL >= 30 & AVAL < 35, "Obesity class I", 4, "BMI", AVAL >= 35 & AVAL < 40, "Obesity class II", 5, "BMI", AVAL >= 40, "Obesity class III", 6, "BMI", is.na(AVAL), NA_character_, NA_integer_ ) # Derive BMI class (AVALCAT1, AVALCA1N) advs <- advs %>% derive_vars_cat( definition = avalcat_lookup, by_vars = exprs(PARAMCD) )
dataset_vignette( arrange(advs, USUBJID, PARAMCD, VISITNUM), display_vars = exprs(USUBJID, PARAMCD, VISIT, AVAL, AVALCA1N, AVALCAT1), filter = PARAMCD == "BMI" & USUBJID %in% c("01-701-1023", "01-701-1034") )
Now we can use derive_var_base
to derive the BASECATy
/ BASECAyN
variables.
advs <- advs %>% derive_var_base( by_vars = exprs(!!!get_admiral_option("subject_keys"), PARAMCD), source_var = AVALCAT1, new_var = BASECAT1 ) %>% derive_var_base( by_vars = exprs(!!!get_admiral_option("subject_keys"), PARAMCD), source_var = AVALCA1N, new_var = BASECA1N )
dataset_vignette( arrange(advs, USUBJID, PARAMCD, VISITNUM), display_vars = exprs(USUBJID, PARAMCD, VISIT, AVAL, BASE, ABLFL, BASECA1N, BASECAT1), filter = PARAMCD == "BMI" & USUBJID %in% c("01-701-1023", "01-701-1034") )
CRITy
, CRITyFL
, CRITyFN
) {#crit_vars}For deriving criterion variables (CRITy
, CRITyFL
, CRITyFN
)
{admiral}
provides
derive_vars_crit_flag()
.
It ensures that they are derived in an ADaM-compliant way (see
documentation of the function for details).
In most cases the criterion depends on the parameter and in this case
the higher order function
restrict_derivation()
can be useful. In the following example, the criterion flags for weight
based on percentage change in weight reduction from baseline is derived.
Additional criterion flags can be added as needed.
advs <- advs %>% restrict_derivation( derivation = derive_vars_crit_flag, args = params( condition = PCHG <= -5 & PARAMCD == "WEIGHT", description = "Achievement of >= 5% weight reduction from baseline", crit_nr = 1, values_yn = TRUE, create_numeric_flag = FALSE ), filter = VISITNUM > 0 & PARAMCD == "WEIGHT" ) %>% restrict_derivation( derivation = derive_vars_crit_flag, args = params( condition = PCHG <= -10 & PARAMCD == "WEIGHT", description = "Achievement of >= 10% weight reduction from baseline", crit_nr = 2, values_yn = TRUE, create_numeric_flag = FALSE ), filter = VISITNUM > 0 & PARAMCD == "WEIGHT" )
dataset_vignette( arrange(advs, USUBJID, VISITNUM, VSTPTNUM, PARAMCD), display_vars = exprs(USUBJID, PARAMCD, PCHG, CRIT1, CRIT1FL, CRIT2, CRIT2FL, VISIT, VISITNUM), filter = PARAMCD %in% c("WEIGHT") & USUBJID %in% c("01-701-1033", "01-701-1034") & VISITNUM %in% c(3, 10, 11, 12, 13) )
The {admiral}
Creating a BDS Finding ADaM
vignette
covers all the steps that are not shown here, such as merging the
parameter-level values, timing variables, and analysis flags.
| ADaM | Sample Code | |-------------------|-----------------------------------------------------| | ADVS | ad_advs.R{target="_blank"} |
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.