Nothing
test_that("ADPROCLUS base case normal input", {
x <- stackloss
expect_no_error(adproclus(x, nclusters = 2, seed = 1))
expect_no_error(adproclus(x,
nclusters = 3,
nrandomstart = 1, nsemirandomstart = 1, algorithm = "ALS2",
seed = 1
))
expect_no_error(adproclus(x,
nclusters = 3,
nrandomstart = 1, nsemirandomstart = 1, algorithm = "ALS1",
seed = 1
))
expect_no_error(adproclus(x,
nclusters = 3,
nrandomstart = 2, nsemirandomstart = 2, save_all_starts = TRUE,
seed = 1
))
})
test_that("ADPROCLUS with start_allocation ", {
x <- stackloss
start <- get_rational(x, x[1:4, ])$A
expect_no_error(adproclus(x, nclusters = 4, start_allocation = start, seed = 1))
expect_no_error(adproclus(x,
nclusters = 4,
nrandomstart = 0, nsemirandomstart = 0,
start_allocation = start,
seed = 1
))
})
test_that("ADPROCLUS illegal inputs", {
x <- stackloss
# no random starts and no start_allocation
expect_error(adproclus(x,
nclusters = 2,
nrandomstart = 0, nsemirandomstart = 0,
seed = 1
))
# A0 more rows than data
start <- get_rational(x, x[1:4, ])$A
expect_error(adproclus(x[seq_len(nrow(x) - 1), ],
nclusters = 4,
start_allocation = start,
seed = 1
))
# ncol(start_allocation) unequal nclusters
start <- get_rational(x, x[1:4, ])$A
expect_error(adproclus(x, nclusters = 2, start_allocation = start, seed = 1))
})
test_that("adproclus_low_dim base case normal input", {
x <- stackloss
expect_no_error(adproclus_low_dim(x, nclusters = 2, ncomponents = 1, seed = 1))
expect_no_error(adproclus_low_dim(x,
nclusters = 3, ncomponents = 2,
nrandomstart = 1, nsemirandomstart = 1,
seed = 1
))
expect_no_error(adproclus_low_dim(x,
nclusters = 3, ncomponents = 2,
nrandomstart = 2, nsemirandomstart = 2, save_all_starts = TRUE,
seed = 1
))
expect_no_error(adproclus_low_dim(x, nclusters = 1, ncomponents = 1, seed = 1))
})
test_that("adproclus_low_dim with start_allocation ", {
x <- stackloss
start <- get_rational(x, x[1:3, ])$A
expect_no_error(adproclus_low_dim(x, nclusters = 3, ncomponents = 1,
start_allocation = start,
seed = 1))
expect_no_error(adproclus_low_dim(x,
nclusters = 3, ncomponents = 1,
nrandomstart = 0, nsemirandomstart = 0,
start_allocation = start,
seed = 1
))
})
test_that("adproclus_low_dim illegal inputs", {
x <- stackloss
# no random starts and no start_allocation
expect_error(adproclus_low_dim(x,
nclusters = 2, ncomponents = 1,
nrandomstart = 0, nsemirandomstart = 0
))
# A0 more rows than data
start <- get_rational(x, x[1:4, ])$A
expect_error(adproclus_low_dim(x[seq_len(nrow(x) - 1), ], nclusters = 4, ncomponents = 1, start_allocation = start))
# ncol(start_allocation) unequal nclusters
start <- get_rational(x, x[1:4, ])$A
expect_error(adproclus_low_dim(x, nclusters = 2, ncomponents = 1, start_allocation = start))
})
test_that("reproducibility both functions", {
x <- stackloss
start <- get_rational(x, x[1:4, ])$A
expect_equal(
adproclus(x,
nclusters = 4, nrandomstart = 1, nsemirandomstart = 1,
start_allocation = start, save_all_starts = TRUE, seed = 10
)$model,
adproclus(x,
nclusters = 4, nrandomstart = 1, nsemirandomstart = 1,
start_allocation = start, save_all_starts = TRUE, seed = 10
)$model
)
expect_equal(
adproclus_low_dim(x,
nclusters = 4, ncomponents = 1, nrandomstart = 1, nsemirandomstart = 1,
start_allocation = start, save_all_starts = TRUE, seed = 10
)$model,
adproclus_low_dim(x,
nclusters = 4, ncomponents = 1, nrandomstart = 1, nsemirandomstart = 1,
start_allocation = start, save_all_starts = TRUE, seed = 10
)$model
)
})
test_that("order of clusters", {
x <- stackloss
model <- adproclus(x,
nclusters = 4, nrandomstart = 1, nsemirandomstart = 1,
save_all_starts = TRUE, seed = 10
)
expect_equal(
unname(rank((-1) * colSums(model$A), ties.method = "first")),
seq_len(ncol(model$A))
)
model2 <- adproclus(x,
nclusters = 4, nrandomstart = 1, nsemirandomstart = 1,
save_all_starts = TRUE, seed = 10, algorithm = "ALS2"
)
expect_equal(
unname(rank((-1) * colSums(model2$A), ties.method = "first")),
seq_len(ncol(model2$A))
)
modelLD <- adproclus_low_dim(x,
nclusters = 4, ncomponents = 2, nrandomstart = 1, nsemirandomstart = 1,
save_all_starts = TRUE, seed = 10
)
expect_equal(
unname(rank((-1) * colSums(modelLD$A), ties.method = "first")),
seq_len(ncol(modelLD$A))
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.