Nothing
test_that("Returns the desired length", {
skip_if_not_installed("withr")
withr::local_seed(222)
# Generate some sample data
tsd_data <- generate_seasonal_data(
years = 1,
start_date = as.Date("2023-01-01"),
time_interval = "day"
)
# Employ the seasonal_onset function
tsd_results <- seasonal_onset(
tsd = tsd_data,
k = 7,
level = 0.95,
family = "poisson"
)
# Predict observations for the next 7 time steps
prediction <- predict(object = tsd_results, n_step = 7)
# Return the number of prediction + the initial observation
expect_length(prediction$estimate, 8)
})
test_that("Can correctly make an 'tsd_predict' class object", {
skip_if_not_installed("withr")
withr::local_seed(222)
# Generate some sample data
tsd_data <- generate_seasonal_data(
years = 1,
start_date = as.Date("2023-01-01"),
time_interval = "day"
)
# Employ the seasonal_onset function
tsd_results <- seasonal_onset(
tsd = tsd_data,
k = 7,
level = 0.95,
family = "poisson"
)
# Predict observations for the next 7 time steps
prediction <- predict(object = tsd_results, n_step = 7)
# Return the number of prediction + the initial observation
expect_s3_class(object = prediction, class = "tsd_predict")
})
test_that("Can correctly use weekly time_interval classification", {
skip_if_not_installed("withr")
withr::local_seed(222)
# Generate some sample data
tsd_data <- generate_seasonal_data(
years = 1,
start_date = as.Date("2023-01-01"),
time_interval = "week"
)
# Employ the seasonal_onset function
tsd_results <- seasonal_onset(
tsd = tsd_data,
k = 7,
level = 0.95,
family = "poisson"
)
# Get subsequent 5 weeks of data
weeks <- seq.Date(from = dplyr::last(tsd_results$reference_time), by = "week", length.out = 6)
# Make prediction of next 5 time steps
prediction <- predict(object = tsd_results, n_step = 5)
expect_equal(weeks, prediction$reference_time)
})
test_that("Can correctly use daily time_interval classification", {
skip_if_not_installed("withr")
withr::local_seed(222)
# Generate some sample data
tsd_data <- generate_seasonal_data(
years = 1,
start_date = as.Date("2023-01-01"),
time_interval = "day"
)
# Employ the seasonal_onset function
tsd_results <- seasonal_onset(
tsd = tsd_data,
k = 7,
level = 0.95,
family = "poisson"
)
# Get subsequent 5 days of data
days <- seq.Date(from = dplyr::last(tsd_results$reference_time), by = "day", length.out = 6)
# Make prediction of next 5 time steps
prediction <- predict(object = tsd_results, n_step = 5)
expect_equal(days, prediction$reference_time)
})
test_that("Can correctly use monthly time_interval classification", {
skip_if_not_installed("withr")
withr::local_seed(222)
# Generate some sample data
tsd_data <- generate_seasonal_data(
years = 1,
start_date = as.Date("2023-01-01"),
time_interval = "month"
)
# Employ the seasonal_onset function
tsd_results <- seasonal_onset(
tsd = tsd_data,
k = 7,
level = 0.95,
family = "poisson"
)
# Get subsequent 5 days of data
months <- seq.Date(from = dplyr::last(tsd_results$reference_time), by = "month", length.out = 6)
# Make prediction of next 5 time steps
prediction <- predict(object = tsd_results, n_step = 5)
expect_equal(months, prediction$reference_time)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.