{affiner}
is an extraction and improvement of the low-level geometric and R 4.2 affine transformation feature functionality used in {piecepackr} to render board game pieces in {grid}
using a 3D oblique projection.
The current goals are to:
{piecepackr}
users to use this low-level geometric functionality without exporting it in {piecepackr}
(which already has a large API) in case they want to do things like implement custom polyhedral dice.{grid}
(and perhaps {ggplot2}
).Some particular intended strengths compared to other R geometry packages:
{grid}
(e.g. oblique projections and isometric projections).{grid}
.
The affine_settings()
function which reverse engineers useGrob()
's vp
and transformation
arguments
is even available as a "standalone" file that can be copied
over into other R packages under the permissive Unlicense.knitr::opts_chunk$set(fig.cap = "", dev = "ragg_png")
isocubeGrob()
/ grid.isocube()
provides a convenience wrapper around affineGrob()
for the isometric cube case:
library("aRtsy") library("ggplot2") gg <- canvas_planet(colorPalette("lava"), threshold = 3) + scale_x_continuous(expand=c(0, 0)) + scale_y_continuous(expand=c(0, 0)) grob <- ggplotGrob(gg) grob <- gtable::gtable_filter(grob, "panel") # grab just the panel affiner::grid.isocube(top = grob, left = grob, right = grob, gp_border = grid::gpar(col = "darkorange", lwd = 12))
affine_settings()
and grid.affine()
directly to make an isometric cube logo.as_coord2d()
method for angle()
objects lets you compute the regular polygon vertices and center using polar coordinatesaffine_settings()
and affineGrob()
or grid.affine()
to render arbitrary "illustrated" grobs within each of these parallelograms.library("affiner") library("grid") xy <- as_coord2d(angle(seq(90, 360 + 90, by = 60), "degrees"), radius = c(rep(0.488, 6), 0)) xy$translate(x = 0.5, y = 0.5) l_xy <- list() l_xy$top <- xy[c(1, 2, 7, 6)] l_xy$right <- xy[c(7, 4, 5, 6)] l_xy$left <- xy[c(2, 3, 4, 7)] gp_border <- gpar(fill = NA, col = "black", lwd = 12) vp_define <- viewport(width = unit(3, "inches"), height = unit(3, "inches")) colors <- c("#D55E00", "#56B4E9", "#009E73") spacings <- c(0.25, 0.25, 0.2) texts <- c("pkgname", "right\nface", "left\nface") rots <- c(45, 0, 0) fontsizes <- c(52, 80, 80) sides <- c("top", "right", "left") types <- gridpattern::names_polygon_tiling[c(5, 9, 7)] l_grobs <- list() grid.newpage() for (i in 1:3) { side <- sides[i] xy_side <- l_xy[[side]] if (requireNamespace("gridpattern", quietly = TRUE)) { bg <- gridpattern::grid.pattern_polygon_tiling( colour = "grey80", fill = c(colors[i], "white"), type = types[i], spacing = spacings[i], draw = FALSE) } else { bg <- rectGrob(gp = gpar(col = NA, fill = colors[i])) } text <- textGrob(texts[i], rot = rots[i], gp = gpar(fontsize = fontsizes[i])) settings <- affine_settings(xy_side, unit = "snpc") grob <- l_grobs[[side]] <- grobTree(bg, text) grid.affine(grob, vp_define = vp_define, transform = settings$transform, vp_use = settings$vp) grid.polygon(xy_side$x, xy_side$y, gp = gp_border) }
Our high-level strategy for rendering 3D objects is as follows:
Figure out the "physical" 3D coordinates of the cube face vertices in "inches". These cube faces will correspond to target "3D viewports" we'll want to render the illustrated cube face grobs into.
For my piecepack diagrams I make with {piecepackr} I figuratively think as my graphics device as a piece of paper (bottom left corner is the origin) and calculate the 3D coordinates in inches as if my board game pieces were physically sitting on top of the graphics device (since piecepack tiles are 2 inches by 2 inches this is usually a straightforward calculation).
Project these 3D coordinates onto a "physical" xy-plane (corresponding to our graphics device) in "inches" using a parallel projection (in this example we'll do a couple oblique projections and an isometric projection). Note since all parallel projections are affine transformations we know the projected vertices of a square "3D viewport" will project to the 2D coordinates of a "parallelogram viewport".
(If they don't already do so) translate these parallelograms so they lie within the graphics device view (i.e. the "parallelogram viewport" vertices are all in the upper right quadrant of the xy-plane).
If you use an oblique projection to the xy-plane with an alpha
angle between 0 and 90 degrees then any flat faces lying directly on the xy-plane will stay where they are and any flat faces on a parallel higher plane will only be shifted up/right. So in this case one usually doesn't need to such a translation assuming all your "objects" were placed in the upper quadrant of the xy-plane to begin with.
Use affine_settings()
and grid.affine()
/ affineGrob()
to render the illustrated cube face "grobs" within these affine transformed "parallelogram viewports". The order these are drawn is important but in this example we manually sorted them ahead of time in an order that worked for our target projections.
library("affiner") library("grid") xyz_face <- as_coord3d(x = c(0, 0, 1, 1) - 0.5, y = c(1, 0, 0, 1) - 0.5, z = 0.5) l_faces <- list() # order faces for our target projections l_faces$bottom <- xyz_face$clone()$ rotate("z-axis", angle(180, "degrees"))$ rotate("y-axis", angle(180, "degrees")) l_faces$north <- xyz_face$clone()$ rotate("z-axis", angle(90, "degrees"))$ rotate("x-axis", angle(-90, "degrees")) l_faces$east <- xyz_face$clone()$ rotate("z-axis", angle(90, "degrees"))$ rotate("y-axis", angle(90, "degrees")) l_faces$west <- xyz_face$clone()$ rotate("y-axis", angle(-90, "degrees")) l_faces$south <- xyz_face$clone()$ rotate("z-axis", angle(180, "degrees"))$ rotate("x-axis", angle(90, "degrees")) l_faces$top <- xyz_face$clone()$ rotate("z-axis", angle(-90, "degrees")) colors <- c("#D55E00", "#009E73", "#56B4E9", "#E69F00", "#CC79A7", "#0072B2") spacings <- c(0.25, 0.2, 0.25, 0.25, 0.25, 0.25) die_face_grob <- function(digit) { if (requireNamespace("gridpattern", quietly = TRUE)) { bg <- gridpattern::grid.pattern_polygon_tiling( colour = "grey80", fill = c(colors[digit], "white"), type = gridpattern::names_polygon_tiling[digit], spacing = spacings[digit], draw = FALSE) } else { bg <- rectGrob(gp = gpar(col = NA, fill = colors[digit])) } digit <- textGrob(digit, gp = gpar(fontsize = 72)) grobTree(bg, digit) } l_face_grobs <- lapply(1:6, function(i) die_face_grob(i)) grid.newpage() for (i in 1:6) { vp <- viewport(x = unit((i - 1) %% 3 + 1, "inches"), y = unit(3 - ((i - 1) %/% 3 + 1), "inches"), width = unit(1, "inches"), height = unit(1, "inches")) pushViewport(vp) grid.draw(l_face_grobs[[i]]) popViewport() grid.text("The six die faces", y = 0.9, gp = gpar(fontsize = 18, face = "bold")) }
# re-order face grobs for our target projections # bottom = 6, north = 4, east = 5, west = 2, south = 3, top = 1 l_face_grobs <- l_face_grobs[c(6, 4, 5, 2, 3, 1)] draw_die <- function(l_xy, l_face_grobs) { min_x <- min(vapply(l_xy, function(x) min(x$x), numeric(1))) min_y <- min(vapply(l_xy, function(x) min(x$y), numeric(1))) l_xy <- lapply(l_xy, function(xy) { xy$translate(x = -min_x + 0.5, y = -min_y + 0.5) }) grid.newpage() vp_define <- viewport(width = unit(1, "inches"), height = unit(1, "inches")) gp_border <- gpar(col = "black", lwd = 4, fill = NA) for (i in 1:6) { xy <- l_xy[[i]] settings <- affine_settings(xy, unit = "inches") grid.affine(l_face_grobs[[i]], vp_define = vp_define, transform = settings$transform, vp_use = settings$vp) grid.polygon(xy$x, xy$y, default.units = "inches", gp = gp_border) } } # oblique projection of dice onto xy-plane l_xy_oblique1 <- lapply(l_faces, function(xyz) { xyz$clone() |> as_coord2d(scale = 0.5) }) draw_die(l_xy_oblique1, l_face_grobs) grid.text("Oblique projection\n(onto xy-plane)", y = 0.9, gp = gpar(fontsize = 18, face = "bold")) # oblique projection of dice on xz-plane l_xy_oblique2 <- lapply(l_faces, function(xyz) { xyz$clone()$ permute("xzy") |> as_coord2d(scale = 0.5, alpha = angle(135, "degrees")) }) draw_die(l_xy_oblique2, l_face_grobs) grid.text("Oblique projection\n(onto xz-plane)", y = 0.9, gp = gpar(fontsize = 18, face = "bold")) # isometric projection l_xy_isometric <- lapply(l_faces, function(xyz) { xyz$clone()$ rotate("z-axis", angle(45, "degrees"))$ rotate("x-axis", angle(-(90 - 35.264), "degrees")) |> as_coord2d() }) draw_die(l_xy_isometric, l_face_grobs) grid.text("Isometric projection", y = 0.9, gp = gpar(fontsize = 18, face = "bold"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.