Description Usage Arguments Details Value Author(s) References See Also Examples
Provides posterior estimates of AFT model with log normal distribution using Bayesian for multivariate (maximum 5 at a time) in high dimensional gene expression data. It also deals covariates with missing values.
| 1 | 
| m | Starting column number of covariates of study from high dimensional entered data. | 
| n | Ending column number of covariates of study from high dimensional entered data. | 
| STime | name of survival time in data | 
| Event | name of event in data. 0 is for censored and 1 for occurrence of event. | 
| nc | number of MCMC chain. | 
| ni | number of MCMC iteration to update the outcome. | 
| data | High dimensional gene expression data that contains event status, survival time and and set of covariates. | 
This function deals covariates (in data) with missing values. Missing value in any column (covariate) is replaced by mean of that particular covariate. AFT model is log-linear regression model for survival time T_{1}, T_{2},..,T_{n}. i.e.,
log(T_i)= x_i'β +σε_i ;~ε_i \sim F_ε (.)~which~is~iid
Where F_ε is known cdf which is defined on real line. When baseline distribution is normal then T follows log normal distribution.
T \sim LN(x'β,1/τ)
Data frame is containing mean, sd, n.eff, Rhat and credible intervals for beta's, sigma, tau and deviance of the model for the chosen covariates. beta[1] is for intercept and others are for covariates (which is/are chosen as columns in data). sigma is the scale parameter of the distribution.
Atanu Bhattacharjee, Gajendra Kumar Vishwakarma and Pragya Kumari
Prabhash et al(2016) <doi:10.21307/stattrans-2016-046>
lgnbyuni, wbysmv, lgstbymv
| 1 2 3 4 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.