| make_agfh_sampler | R Documentation |
A maker function that returns a function. The returned function is a sampler for the agnostic Fay-Herriot model.
X |
observed independent data to be analyzed |
Y |
observed dependent data to be analyzed |
D |
known precisions of response |
var_gamma_a |
latent variance prior parameter, |
var_gamma_b |
latent variance prior parameter, |
S |
vector of starting support values for |
kern.a0 |
scalar variance parameter of GP kernel |
kern.a1 |
scalar lengthscale parameter of GP kernel |
kern.fuzz |
scalar noise variance of kernel |
Creates a Metropolis-within-Gibbs sampler of the agnostic Fay-Herriot model (AGFH).
Returns a sampler, itself a function of initial parameter values (a list with values for \beta, \theta, the latent variance of \theta, and starting values for g(.), typically zeros), number of samples, thinning rate, and scale of Metropolis-Hastings jumps for \theta sampling.
Marten Thompson thom7058@umn.edu
n <- 10
X <- matrix(1:n, ncol=1)
Y <- 2*X + rnorm(n, sd=1.1)
D <- rep(1, n)
ag <- make_agfh_sampler(X, Y, D)
params.init <- list(
beta=1,
theta=rep(0,n),
theta.var=1,
gamma=rep(0,n)
)
ag.out <- ag(params.init, 5, 1, 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.