hanks.sprinkler | R Documentation |
Three wheat varieties planted in 3 blocks, with a line sprinkler crossing all whole plots.
A data frame with 108 observations on the following 7 variables.
block
block
row
row
subplot
column
gen
genotype, 3 levels
yield
yield (tons/ha)
irr
irrigation level, 1..6
dir
direction from sprinkler, N/S
A line-source sprinkler is placed through the middle of the experiment (between subplots 6 and 7). Subplots closest to the sprinkler receive the most irrigation. Subplots far from the sprinkler (near the edges) have the lowest yields.
One data value was modified from the original (following the example of other authors).
Hanks, R.J., Sisson, D.V., Hurst, R.L, and Hubbard K.G. (1980). Statistical Analysis of Results from Irrigation Experiments Using the Line-Source Sprinkler System. Soil Science Society of America Journal, 44, 886-888. https://doi.org/10.2136/sssaj1980.03615995004400040048x
Johnson, D. E., Chaudhuri, U. N., and Kanemasu, E. T. (1983). Statistical Analysis of Line-Source Sprinkler Irrigation Experiments and Other Nonrandomized Experiments Using Multivariate Methods. Soil Science Society American Journal, 47, 309-312.
Stroup, W. W. (1989). Use of Mixed Model Procedure to Analyze Spatially Correlated Data: An Example Applied to a Line-Source Sprinkler Irrigation Experiment. Applications of Mixed Models in Agriculture and Related Disciplines, Southern Cooperative Series Bulletin No. 343, 104-122.
SAS Stat User's Guide. https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_mixed_sect038.htm
## Not run:
library(agridat)
data(hanks.sprinkler)
dat <- hanks.sprinkler
# The line sprinkler is vertical between subplots 6 & 7
libs(desplot)
desplot(dat, yield~subplot*row,
out1=block, out2=irr, cex=1, # aspect unknown
num=gen, main="hanks.sprinkler")
libs(lattice)
xyplot(yield~subplot|block, dat, type=c('b'), group=gen,
layout=c(1,3), auto.key=TRUE,
main="hanks.sprinkler",
panel=function(x,y,...){
panel.xyplot(x,y,...)
panel.abline(v=6.5, col='wheat')
})
## This is the model from the SAS documentation
## proc mixed;
## class block gen dir irr;
## model yield = gen|dir|irr@2;
## random block block*dir block*irr;
## repeated / type=toep(4) sub=block*gen r;
if(require("asreml", quietly=TRUE)){
libs(asreml,lucid)
dat <- transform(dat, subf=factor(subplot),
irrf=factor(irr))
dat <- dat[order(dat$block, dat$gen, dat$subplot),]
# In asreml3, we can specify corb(subf, 3)
# In asreml4, only corb(subf, 1) runs. corb(subf, 3) says:
# Correlation structure is not positive definite
m1 <- asreml(yield ~ gen + dir + irrf + gen:dir + gen:irrf + dir:irrf,
data=dat,
random= ~ block + block:dir + block:irrf,
resid = ~ block:gen:corb(subf, 3))
lucid::vc(m1)
## effect component std.error z.ratio bound
## block 0.2195 0.2378 0.92 P 0.5
## block:dir 0.01769 0.03156 0.56 P 0
## block:irrf 0.03539 0.0362 0.98 P 0.1
## block:gen:subf!R 0.2851 0.05088 5.6 P 0
## block:gen:subf!subf!cor1 0.02829 0.1142 0.25 U 0.9
## block:gen:subf!subf!cor2 0.004997 0.1278 0.039 U 9.5
## block:gen:subf!subf!cor3 -0.3245 0.09044 -3.6 U 0.1
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.