| tesfaye.millet | R Documentation |
Multi-environment trial of millet
data("tesfaye.millet")
A data frame with 415 observations on the following 9 variables.
yearyear
sitesite (location)
repreplicate
colcolumn ordinate
rowrow ordinate
plotplot number
gengenotype
entry_numberentry
yieldyield, kg/ha
Experiments conducted at Bako and Assosa research centers in Ethiopia. The data has: 4 years, 2 sites = 7 environments, 2-3 reps per trial, 47 genotypes.
Tesfaye et al used asreml to fit a GxE model with Factor Analytic covariance structure for the GxE part and AR1xAR1 for spatial residuals at each site.
Data in PloS ONE was published under Creative Commons Attribution License.
Tesfaye K, Alemu T, Argaw T, de Villiers S, Assefa E (2023) Evaluation of finger millet (Eleusine coracana (L.) Gaertn.) in multi-environment trials using enhanced statistical models. PLoS ONE 18(2): e0277499. https://doi.org/10.1371/journal.pone.0277499
None
## Not run:
library(agridat)
data(tesfaye.millet)
dat <- tesfaye.millet
dat <- transform(dat, year=factor(year), site=factor(site))
libs(dplyr,asreml,lucid)
dat <- mutate(dat,
env=factor(paste0(site,year)),
gen=factor(gen),
rep=factor(rep),
xfac=factor(col), yfac=factor(row))
libs(desplot)
desplot(dat, yield~col*row|env, main="tesfaye.millet")
dat <- arrange(dat, env, xfac, yfac)
# Fixed environment
# Random row/col within environment, Factor Analytic GxE
# AR1xAR1 spatial residuals within each environment
if(require("asreml", quietly=TRUE)){
libs(asreml)
m1 <- asreml(yield ~ 1 + env,
data=dat,
random = ~ at(env):xfac + at(env):yfac + gen:fa(env),
residual = ~ dsum( ~ ar1(xfac):ar1(yfac)|env) )
m1 <- update(m1)
lucid::vc(m1)
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.