Nothing
## ----setup------------------------------------------------------------------------------
library(agridat)
data(crowder.seeds)
dat <- crowder.seeds
## ----plot-------------------------------------------------------------------------------
libs(lattice)
dotplot(germ/n~gen|extract, dat, main="crowder.seeds", xlab="gen")
## ----brms, eval=FALSE-------------------------------------------------------------------
# if(require(brms)){
# m1.brms <- brms::brm( germ|trials(n)~ gen*extract,
# data = dat,
# family = binomial,
# chains=3, iter=3000, warmup=1000)
# summary(m1.brms)
# # round( summary(m1.brms)$fixed[,1:4] , 2)
# # Estimate Est.Error l-95% CI u-95% CI
# # Intercept -0.42 0.18 -0.77 -0.06
# # genO75 -0.14 0.22 -0.56 0.29
# # extractcucumber 0.55 0.25 0.07 1.05
# # genO75:extractcucumber 0.77 0.30 0.18 1.36
# }
## ----glm,eval=FALSE---------------------------------------------------------------------
# # ----- GLM.
# # family=binomial() fixes dispersion at 1
# # family=quasibinomial() estimates dispersion, had larger std errors
# m1.glm <- glm(cbind(germ,n-germ) ~ gen*extract,
# data=dat,
# #family="binomial",
# family=quasibinomial()
# )
# summary(m1.glm)
# ## round(summary(m1.glm)$coef,2)
# ## Estimate Std. Error t value Pr(>|t|)
# ## (Intercept) -0.41 0.25 -1.64 0.12
# ## genO75 -0.15 0.30 -0.48 0.64
# ## extractcucumber 0.54 0.34 1.58 0.13
# ## genO75:extractcucumber 0.78 0.42 1.86 0.08
## ----eval=FALSE-------------------------------------------------------------------------
# # ----- Stan using pre-built models from rstanarm
# libs(tidyverse, rstan, rstanarm,bayesplot)
# set.seed(42)
# m1.stan <- stan_glm( cbind(germ,n-germ) ~ gen*extract,
# data=dat,
# family = binomial(link="logit") )
# summary(m1.stan)
# ## round(posterior_interval(m1.stan, prob=.90),3)
# # 5% 95%
# # (Intercept) -0.728 -0.115
# # genO75 -0.506 0.243
# # extractcucumber 0.133 0.947
# # genO75:extractcucumber 0.255 1.267
#
# libs(bayesplot)
# mcmc_areas(m1.stan, prob = 0.9) +
# ggtitle("Posterior distributions",
# "with medians and 95 pct intervals")
#
## ----asreml,eval=FALSE------------------------------------------------------------------
# if(require(asreml)){
# m1.asreml <- asreml(germ ~ gen*extract,
# data=dat,
# random= ~ plate,
# family=asr_binomial(dispersion=1, total=n))
# summary(m1.asreml)
# ##
# ## effect
# ## (Intercept) -0.47
# ## gen_O73 0.00
# ## gen_O75 -0.08
# ## extract_bean 0.00
# ## extract_cucumber 0.51
# ## gen_O73:extract_bean 0.00
# ## gen_O73:extract_cucumber 0.00
# ## gen_O75:extract_bean 0.00
# ## gen_O75:extract_cucumber 0.83
#
# }
## ----glmmpql,eval=FALSE-----------------------------------------------------------------
# # --- GLMM. Assumes Gaussian random effects
# libs(MASS)
# m1.glmm <- glmmPQL(cbind(germ, n-germ) ~ gen*extract,
# random= ~1|plate,
# family=binomial(), data=dat)
# summary(m1.glmm)
# ## round(summary(m1.glmm)$tTable,2)
# ## Value Std.Error DF t-value p-value
# ## (Intercept) -0.44 0.25 17 -1.80 0.09
# ## genO75 -0.10 0.31 17 -0.34 0.74
# ## extractcucumber 0.52 0.34 17 1.56 0.14
# ## genO75:extractcucumber 0.80 0.42 17 1.88 0.08
#
## ----glmmtmb,eval=FALSE-----------------------------------------------------------------
# libs(glmmTMB)
# m1.glmmtmb <- glmmTMB(cbind(germ, n-germ) ~ gen*extract + (1|plate),
# data=dat,
# family=binomial)
# round(summary(m1.glmmtmb)$coefficients$cond , 2)
# ## Estimate Std. Error z value Pr(>|z|)
# ## (Intercept) -0.45 0.22 -2.03 0.04
# ## genO75 -0.10 0.28 -0.35 0.73
# ## extractcucumber 0.53 0.30 1.74 0.08
# ## genO75:extractcucumber 0.81 0.38 2.11 0.04
## ----hglm,eval=FALSE--------------------------------------------------------------------
# # ----- HGML package. Beta-binomial with beta-distributed random effects
# if(require(hglm)){
# m1.hglm <- hglm(fixed= germ/n ~ I(gen=="O75")*extract, weights=n, data=dat,
# random=~1|plate, family=binomial(), rand.family=Beta(),
# fix.disp=1)
# summary(m1.hglm)
# # round(summary(m1.hglm)$FixCoefMat,2)
# ## Estimate Std. Error t-value Pr(>|t|)
# ## (Intercept) -0.47 0.24 -1.92 0.08
# ## I(gen == "O75")TRUE -0.08 0.31 -0.25 0.81
# ## extractcucumber 0.51 0.33 1.53 0.16
# ## I(gen == "O75")TRUE:extractcucumber 0.83 0.43 1.92 0.08
# }
## ----inla,eval=FALSE--------------------------------------------------------------------
# if(require(INLA)){
# #gen,extract are fixed. plate is a random effect
# #Priors for hyper parameters. See: inla.doc("pc.prec")
# hyper1 = list(theta = list(prior="pc.prec", param=c(1,0.01)))
# m1.inla = inla(germ ~ gen*extract + f(plate, model="iid", hyper=hyper1),
# data=crowder.seeds,
# family="binomial", Ntrials=n,
# control.family=list(control.link=list(model="logit")))
# round( summary(m1.inla)$fixed, 2)
# ## mean sd 0.025quant 0.5quant 0.975quant mode kld
# ## (Intercept) -0.47 0.24 -0.96 -0.46 0.00 -0.46 0
# ## genO75 -0.08 0.31 -0.68 -0.09 0.54 -0.09 0
# ## extractcucumber 0.53 0.33 -0.13 0.53 1.18 0.53 0
# ## genO75:extractcucumber 0.82 0.43 -0.01 0.82 1.69 0.82 0
# }
## ----rjags,eval=FALSE-------------------------------------------------------------------
#
# # JAGS/BUGS. See https://mathstat.helsinki.fi/openbugs/Examples/Seeds.html
# # Germination rate depends on p, which is a logit of a linear predictor
# # based on genotype and extract, plus random deviation to intercept
#
# # To match the output on the BUGS web page, use: dat$gen=="O73".
# # We use dat$gen=="O75" to compare with the parameterization above.
#
# jdat =list(germ = dat$germ, n = dat$n,
# root = as.numeric(dat$extract=="cucumber"),
# gen = as.numeric(dat$gen=="O75"),
# nobs = nrow(dat))
#
# jinit = list(int = 0, genO75 = 0, extcuke = 0, g75ecuke = 0, tau = 10)
#
# # Use logical names (unlike BUGS documentation)
# mod.bug =
# "model {
# for(i in 1:nobs) {
# germ[i] ~ dbin(p[i], n[i])
# b[i] ~ dnorm(0.0, tau)
# logit(p[i]) <- int + genO75 * gen[i] + extcuke * root[i] +
# g75ecuke * gen[i] * root[i] + b[i]
# }
# int ~ dnorm(0.0, 1.0E-6)
# genO75 ~ dnorm(0.0, 1.0E-6)
# extcuke ~ dnorm(0.0, 1.0E-6)
# g75ecuke ~ dnorm(0.0, 1.0E-6)
# tau ~ dgamma(0.001, 0.001)
# sigma <- 1 / sqrt(tau)
# }"
#
# libs(rjags)
# oo <- textConnection(mod.bug)
# j1 <- jags.model(oo, data=jdat, inits=jinit, n.chains=1)
# close(oo)
#
# c1 <- coda.samples(j1, c("int","genO75","g75ecuke","extcuke","sigma"),
# n.iter=20000)
# summary(c1) # Medians are very similar to estimates from hglm
# # libs(lucid)
# # print(vc(c1),3)
# ## Mean SD 2.5% Median 97.5%
# ## extcuke 0.543 0.331 -0.118 0.542 1.2
# ## g75ecuke 0.807 0.436 -0.0586 0.802 1.7
# ## genO75 -0.0715 0.309 -0.665 -0.0806 0.581
# ## int -0.479 0.241 -0.984 -0.473 -0.0299
# ## sigma 0.289 0.142 0.0505 0.279 0.596
#
# # Plot observed data with HPD intervals for germination probability
# c2 <- coda.samples(j1, c("p"), n.iter=20000)
# hpd <- HPDinterval(c2)[[1]]
# med <- summary(c2, quantiles=.5)$quantiles
# fit <- data.frame(med, hpd)
#
# libs(latticeExtra)
# obs <- dotplot(1:21 ~ germ/n, dat,
# main="crowder.seeds", ylab="plate",
# col=as.numeric(dat$gen), pch=substring(dat$extract,1))
# obs + segplot(1:21 ~ lower + upper, data=fit, centers=med)
#
## ----R2jags,eval=FALSE------------------------------------------------------------------
# libs("agridat")
# libs("R2jags")
# dat <- crowder.seeds
#
# # To match the output on the BUGS web page, use: dat$gen=="O73".
# # We use dat$gen=="O75" to compare with the parameterization above.
# jdat =list(germ = dat$germ, n = dat$n,
# root = as.numeric(dat$extract=="cucumber"),
# gen = as.numeric(dat$gen=="O75"),
# nobs = nrow(dat))
#
# jinit = list(list(int = 0, genO75 = 0, extcuke = 0, g75ecuke = 0, tau = 10))
#
# mod.bug = function() {
# for(i in 1:nobs) {
# germ[i] ~ dbin(p[i], n[i])
# b[i] ~ dnorm(0.0, tau)
# logit(p[i]) <- int + genO75 * gen[i] + extcuke * root[i] +
# g75ecuke * gen[i] * root[i] + b[i]
# }
# int ~ dnorm(0.0, 1.0E-6)
# genO75 ~ dnorm(0.0, 1.0E-6)
# extcuke ~ dnorm(0.0, 1.0E-6)
# g75ecuke ~ dnorm(0.0, 1.0E-6)
# tau ~ dgamma(0.001, 0.001)
# sigma <- 1 / sqrt(tau)
# }
#
# parms <- c("int","genO75","g75ecuke","extcuke","sigma")
#
# j1 <- jags(data=jdat, inits=jinit, parms, model.file=mod.bug,
# n.iter=20000, n.chains=1)
# print(j1)
# ## mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
# ## extcuke 0.519 0.325 -0.140 0.325 0.531 0.728 1.158
# ## g75ecuke 0.834 0.429 -0.019 0.552 0.821 1.101 1.710
# ## genO75 -0.096 0.305 -0.670 -0.295 -0.115 0.089 0.552
# ## int -0.461 0.236 -0.965 -0.603 -0.455 -0.312 0.016
# ## sigma 0.255 0.148 0.033 0.140 0.240 0.352 0.572
# ## deviance 103.319 7.489 90.019 98.010 102.770 108.689 117.288
#
# traceplot(as.mcmc(j1))
# densityplot(as.mcmc(j1))
# HPDinterval(as.mcmc(j1))
#
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.