| TEClassifierRegular | R Documentation |
Abstract class for neural nets with 'pytorch'.
This class is deprecated. Please use an Object of class TEClassifierSequential instead.
Objects of this class are used for assigning texts to classes/categories. For the creation and training of a classifier an object of class EmbeddedText or LargeDataSetForTextEmbeddings on the one hand and a factor on the other hand are necessary.
The object of class EmbeddedText or LargeDataSetForTextEmbeddings contains the numerical text representations (text embeddings) of the raw texts generated by an object of class TextEmbeddingModel. For supporting large data sets it is recommended to use LargeDataSetForTextEmbeddings instead of EmbeddedText.
The factor contains the classes/categories for every text. Missing values (unlabeled cases) are supported and can
be used for pseudo labeling.
For predictions an object of class EmbeddedText or LargeDataSetForTextEmbeddings has to be used which was created with the same TextEmbeddingModel as for training.
aifeducation::AIFEMaster -> aifeducation::AIFEBaseModel -> aifeducation::ModelsBasedOnTextEmbeddings -> aifeducation::ClassifiersBasedOnTextEmbeddings -> aifeducation::TEClassifiersBasedOnRegular -> TEClassifierRegular
aifeducation::AIFEMaster$get_all_fields()aifeducation::AIFEMaster$get_documentation_license()aifeducation::AIFEMaster$get_ml_framework()aifeducation::AIFEMaster$get_model_config()aifeducation::AIFEMaster$get_model_description()aifeducation::AIFEMaster$get_model_info()aifeducation::AIFEMaster$get_model_license()aifeducation::AIFEMaster$get_package_versions()aifeducation::AIFEMaster$get_private()aifeducation::AIFEMaster$get_publication_info()aifeducation::AIFEMaster$get_sustainability_data()aifeducation::AIFEMaster$is_configured()aifeducation::AIFEMaster$is_trained()aifeducation::AIFEMaster$set_documentation_license()aifeducation::AIFEMaster$set_model_description()aifeducation::AIFEMaster$set_model_license()aifeducation::AIFEMaster$set_publication_info()aifeducation::AIFEBaseModel$count_parameter()aifeducation::ModelsBasedOnTextEmbeddings$get_text_embedding_model()aifeducation::ModelsBasedOnTextEmbeddings$get_text_embedding_model_name()aifeducation::ClassifiersBasedOnTextEmbeddings$adjust_target_levels()aifeducation::ClassifiersBasedOnTextEmbeddings$check_embedding_model()aifeducation::ClassifiersBasedOnTextEmbeddings$check_feature_extractor_object_type()aifeducation::ClassifiersBasedOnTextEmbeddings$load_from_disk()aifeducation::ClassifiersBasedOnTextEmbeddings$plot_coding_stream()aifeducation::ClassifiersBasedOnTextEmbeddings$plot_training_history()aifeducation::ClassifiersBasedOnTextEmbeddings$predict()aifeducation::ClassifiersBasedOnTextEmbeddings$requires_compression()aifeducation::ClassifiersBasedOnTextEmbeddings$save()aifeducation::TEClassifiersBasedOnRegular$train()new()Creating a new instance of this class.
TEClassifierRegular$new()
Returns an object of class TEClassifierRegular which is ready for configuration.
configure()Creating a new instance of this class.
TEClassifierRegular$configure( name = NULL, label = NULL, text_embeddings = NULL, feature_extractor = NULL, target_levels = NULL, bias = TRUE, dense_size = 4L, dense_layers = 0L, rec_size = 4L, rec_layers = 2L, rec_type = "GRU", rec_bidirectional = FALSE, self_attention_heads = 0L, intermediate_size = NULL, attention_type = "Fourier", add_pos_embedding = TRUE, act_fct = "ELU", parametrizations = "None", rec_dropout = 0.1, repeat_encoder = 1L, dense_dropout = 0.4, encoder_dropout = 0.1 )
namestring Name of the new model. Please refer to common name conventions.
Free text can be used with parameter label. If set to NULL a unique ID
is generated automatically. Allowed values: any
labelstring Label for the new model. Here you can use free text. Allowed values: any
text_embeddingsEmbeddedText, LargeDataSetForTextEmbeddings Object of class EmbeddedText or LargeDataSetForTextEmbeddings.
feature_extractorTEFeatureExtractor Object of class TEFeatureExtractor which should be used in order to reduce
the number of dimensions of the text embeddings. If no feature extractor should be applied set NULL.
target_levelsvector containing the levels (categories or classes) within the target data. Please
note that order matters. For ordinal data please ensure that the levels are sorted correctly with later levels
indicating a higher category/class. For nominal data the order does not matter.
biasbool If TRUE a bias term is added to all layers. If FALSE no bias term is added to the layers.
dense_sizeint Number of neurons for each dense layer. Allowed values: 1 <= x
dense_layersint Number of dense layers. Allowed values: 0 <= x
rec_sizeint Number of neurons for each recurrent layer. Allowed values: 1 <= x
rec_layersint Number of recurrent layers. Allowed values: 0 <= x
rec_typestring Type of the recurrent layers. rec_type='GRU' for Gated Recurrent Unit and rec_type='LSTM' for Long Short-Term Memory. Allowed values: 'GRU', 'LSTM'
rec_bidirectionalbool If TRUE a bidirectional version of the recurrent layers is used.
self_attention_headsint determining the number of attention heads for a self-attention layer. Only relevant if attention_type='multihead' Allowed values: 0 <= x
intermediate_sizeint determining the size of the projection layer within a each transformer encoder. Allowed values: 1 <= x
attention_typestring Choose the attention type. Allowed values: 'Fourier', 'MultiHead'
add_pos_embeddingbool TRUE if positional embedding should be used.
act_fctstring Activation function for all layers. Allowed values: 'ELU', 'LeakyReLU', 'ReLU', 'GELU', 'Sigmoid', 'Tanh', 'PReLU'
parametrizationsstring Re-Parametrizations of the weights of layers. Allowed values: 'None', 'OrthogonalWeights', 'WeightNorm', 'SpectralNorm'
rec_dropoutdouble determining the dropout between recurrent layers. Allowed values: 0 <= x <= 0.6
repeat_encoderint determining how many times the encoder should be added to the network. Allowed values: 0 <= x
dense_dropoutdouble determining the dropout between dense layers. Allowed values: 0 <= x <= 0.6
encoder_dropoutdouble determining the dropout for the dense projection within the transformer encoder layers. Allowed values: 0 <= x <= 0.6
Returns an object of class TEClassifierRegular which is ready for training.
clone()The objects of this class are cloneable with this method.
TEClassifierRegular$clone(deep = FALSE)
deepWhether to make a deep clone.
This model requires pad_value=0. If this condition is not met the
padding value is switched automatically.
Other Classification:
TEClassifierParallel,
TEClassifierParallelPrototype,
TEClassifierProtoNet,
TEClassifierSequential,
TEClassifierSequentialPrototype
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.