Nothing
#' @title Vignette classifier
#'
#' @description An object of class [TEClassifierRegular] trained with the a subset of the Standford Movie Review
#' Dataset. The purpose of classifier is for illustration in vignettes.
#'
#' @docType data
#' @format R6
#' @keywords internal
"vignette_classifier"
#' @title Vignette classifier ProtoNet
#'
#' @description An object of class [TEClassifierProtoNet] trained with the a subset of the Standford Movie Review
#' Dataset. The purpose of classifier is for illustration in vignettes.
#'
#' @docType data
#' @format R6
#' @keywords internal
"vignette_classifier_ProtoNet"
#' @title Vignette classifier trained with Synthetic Cases and Pseudo Labeling
#'
#' @description An object of class [TEClassifierProtoNet] trained with the a subset of the Standford Movie Review
#' Dataset. The purpose of classifier is for illustration in vignettes.
#'
#' @docType data
#' @format R6
#' @keywords internal
"vignette_classifier_sc_pl"
#' @title Standford Movie Review Dataset
#'
#' @description A [data.frame] consisting of a subset of 100 negative and 200 positive movie reviews from the
#' dataset provided by Maas et al. (2011). The [data.frame] consists of three columns. The first column 'text'
#' stores the movie review. The second stores the labels (0 = negative, 1 = positive). The last column stores the id.
#' The purpose of the data is for illustration in vignettes.
#'
#' @docType data
#' @format data.frame
#' @keywords internal
#' @references Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning Word Vectors
#' for Sentiment Analysis. In D. Lin, Y. Matsumoto, & R. Mihalcea (Eds.), Proceedings of the 49th Annual Meeting of
#' the Association for Computational Linguistics: Human Language Technologies (pp. 142–150). Association for
#' Computational Linguistics. https://aclanthology.org/P11-1015
#'
"imdb_movie_reviews"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.