tests/testthat/_snaps/ALEpDist.md

ALEpDist works with default inputs (exact) on ALE()

Code
  unclass(pd)
Output
  <object>
  attr(,"S7_class")
  <ale::ALEpDist> class
  @ parent     : <S7_object>
  @ constructor: function(model, data, ..., y_col, rand_it, surrogate, parallel, model_packages, random_model_call_string, random_model_call_string_vars, positive, pred_fun, pred_type, output_residuals, seed, silent, .skip_validation) {...}
  @ validator  : <NULL>
  @ properties :
   $ rand_stats           : <list>            
   $ residual_distribution: S3<univariateML>  
   $ residuals            : <double> or <NULL>
   $ params               : <list>            
  attr(,"rand_stats")
  attr(,"rand_stats")$mpg
  # A tibble: 10 x 6
         aled aler_min aler_max  naled naler_min naler_max
        <dbl>    <dbl>    <dbl>  <dbl>     <dbl>     <dbl>
   1 0.000484 -0.00330  0.00201 0           0         0   
   2 0.00211  -0.00659  0.00835 0.342      -1.56      1.56
   3 0.00196  -0.00644  0.00866 0.220      -1.56      1.56
   4 0.000908 -0.00363  0.00524 0.0244     -1.56      1.56
   5 0.000352 -0.00166  0.00139 0           0         0   
   6 0.000389 -0.00192  0.00158 0           0         0   
   7 0.00136  -0.00551  0.00407 0.0977     -1.56      1.56
   8 0.000976 -0.00361  0.00715 0.0488     -1.56      1.56
   9 0.00280  -0.0136   0.00822 0.439      -1.56      1.56
  10 0.000472 -0.00171  0.00149 0           0         0

  attr(,"residual_distribution")
  Maximum likelihood estimates for the Laplace model 
         mu      sigma  
  1.303e-11  3.587e-03  
  attr(,"params")
  attr(,"params")$model
  attr(,"params")$model$class
  [1] "gam" "glm" "lm"

  attr(,"params")$model$call
  [1] "mgcv::gam(formula = mpg ~ model + s(wt) + am + gear + carb, data = test_cars)"

  attr(,"params")$model$print
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nEstimated degrees of freedom:\n8.03  total = 41.03 \n\nGCV score: 0.0001770391     rank: 42/45"

  attr(,"params")$model$summary
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nParametric coefficients:\n                           Estimate Std. Error  t value Pr(>|t|)    \n(Intercept)               1.432e+01  1.353e-01  105.784  < 2e-16 ***\nmodelCadillac Fleetwood  -9.910e+00  1.259e+00   -7.873 5.68e-08 ***\nmodelCamaro Z28          -3.700e+00  7.268e-02  -50.911  < 2e-16 ***\nmodelChrysler Imperial   -5.777e+00  1.276e+00   -4.526 0.000152 ***\nmodelDatsun 710          -3.793e+00  1.131e-01  -33.550  < 2e-16 ***\nmodelDodge Challenger    -1.266e-01  2.060e-02   -6.147 2.87e-06 ***\nmodelDuster 360          -1.547e+00  2.851e-02  -54.276  < 2e-16 ***\nmodelFerrari Dino        -4.088e+00  1.542e-01  -26.506  < 2e-16 ***\nmodelFiat 128             7.211e+00  9.518e-02   75.763  < 2e-16 ***\nmodelFiat X1-9            5.916e+00  1.941e-01   30.488  < 2e-16 ***\nmodelFord Pantera L      -1.094e+01  1.737e-01  -63.000  < 2e-16 ***\nmodelHonda Civic          1.474e+01  2.896e-01   50.893  < 2e-16 ***\nmodelHornet 4 Drive       7.569e+00  5.315e-02  142.406  < 2e-16 ***\nmodelHornet Sportabout    3.468e+00  9.616e-03  360.698  < 2e-16 ***\nmodelLincoln Continental -1.023e+01  1.279e+00   -7.998 4.34e-08 ***\nmodelLotus Europa         2.341e+01  3.392e-01   69.015  < 2e-16 ***\nmodelMaserati Bora       -1.408e+01  1.903e-01  -74.006  < 2e-16 ***\nmodelMazda RX4           -8.359e+00  1.638e-01  -51.017  < 2e-16 ***\nmodelMazda RX4 Wag       -1.030e+01  1.761e-01  -58.494  < 2e-16 ***\nmodelMerc 230             2.481e+00  5.506e-02   45.064  < 2e-16 ***\nmodelMerc 240D            3.804e+00  5.586e-02   68.099  < 2e-16 ***\nmodelMerc 280            -2.984e+00  6.794e-02  -43.926  < 2e-16 ***\nmodelMerc 280C           -4.382e+00  6.668e-02  -65.723  < 2e-16 ***\nmodelMerc 450SE          -1.661e+00  1.075e-01  -15.448 1.26e-13 ***\nmodelMerc 450SL           7.892e-01  5.311e-02   14.861 2.83e-13 ***\nmodelMerc 450SLC         -1.524e+00  6.416e-02  -23.749  < 2e-16 ***\nmodelPontiac Firebird     2.178e+00  7.002e-02   31.102  < 2e-16 ***\nmodelPorsche 914-2        8.306e+00  1.409e-01   58.945  < 2e-16 ***\nmodelToyota Corolla       1.419e+01  2.372e-01   59.809  < 2e-16 ***\nmodelToyota Corona        1.342e+01  2.208e-01   60.795  < 2e-16 ***\nmodelValiant              2.760e+00  1.050e-02  262.897  < 2e-16 ***\nmodelVolvo 142E          -9.189e+00  1.720e-01  -53.428  < 2e-16 ***\namTRUE                    1.302e+01  1.792e-01   72.629  < 2e-16 ***\ngear.L                    1.571e-01  2.703e-02    5.811 6.42e-06 ***\ngear.Q                   -5.584e+00  4.818e-02 -115.914  < 2e-16 ***\ncarb                     -3.135e-04  4.119e-03   -0.076 0.939977    \n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nApproximate significance of smooth terms:\n        edf Ref.df   F p-value    \ns(wt) 8.027  8.693 449  <2e-16 ***\n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nRank: 42/45\nR-sq.(adj) =      1   Deviance explained =  100%\nGCV = 0.00017704  Scale est. = 6.3549e-05  n = 64"


  attr(,"params")$y_col
  [1] "mpg"

  attr(,"params")$rand_it
  [1] 10

  attr(,"params")$parallel
  [1] 0

  attr(,"params")$model_packages
  NULL

  attr(,"params")$random_model_call_string
  NULL

  attr(,"params")$random_model_call_string_vars
  character(0)

  attr(,"params")$positive
  [1] TRUE

  attr(,"params")$seed
  [1] 0

  attr(,"params")$rand_it_ok
  [1] 10

  attr(,"params")$exactness
  [1] "invalid"
Code
  unclass(cars_ale)
Output
  <object>
  attr(,"S7_class")
  <ale::ALE> class
  @ parent     : <S7_object>
  @ constructor: function(model, x_cols, data, y_col, ..., exclude_cols, parallel, model_packages, output_stats, output_boot_data, pred_fun, pred_type, p_values, aler_alpha, max_num_bins, boot_it, boot_alpha, boot_centre, seed, y_type, sample_size, silent, .bins) {...}
  @ validator  : <NULL>
  @ properties :
   $ effect: <list>
   $ params: <list>
  attr(,"effect")
  attr(,"effect")$mpg
  attr(,"effect")$mpg$ale
  attr(,"effect")$mpg$ale$d1
  attr(,"effect")$mpg$ale$d1$vs
  # A tibble: 2 x 7
    vs.bin    .n    .y .y_lo .y_mean .y_median .y_hi
    <ord>  <int> <dbl> <dbl>   <dbl>     <dbl> <dbl>
  1 FALSE     36     0     0       0         0     0
  2 TRUE      28     0     0       0         0     0

  attr(,"effect")$mpg$ale$d1$continent
  # A tibble: 3 x 7
    continent.bin    .n    .y .y_lo .y_mean .y_median .y_hi
    <ord>         <int> <dbl> <dbl>   <dbl>     <dbl> <dbl>
  1 North America    24     0     0       0         0     0
  2 Europe           28     0     0       0         0     0
  3 Asia             12     0     0       0         0     0

  attr(,"effect")$mpg$ale$d1$am
  # A tibble: 2 x 7
    am.bin    .n    .y .y_lo .y_mean .y_median .y_hi
    <ord>  <int> <dbl> <dbl>   <dbl>     <dbl> <dbl>
  1 FALSE     38 -1.61 -5.01   -1.61    -1.01  0.775
  2 TRUE      26  1.60 -1.75    1.60     0.219 7.28

  attr(,"effect")$mpg$ale$d1$model
  # A tibble: 32 x 7
     model.bin              .n     .y  .y_lo .y_mean .y_median .y_hi
     <ord>               <int>  <dbl>  <dbl>   <dbl>     <dbl> <dbl>
   1 Camaro Z28              2 -1.22  -3.83   -1.22     -1.74   2.27
   2 Cadillac Fleetwood      2 -0.330 -9.42   -0.330     0.233  7.80
   3 Lincoln Continental     2  7.05  -9.18    7.05      7.26  22.9 
   4 Chrysler Imperial       2 15.5   -4.52   15.5      14.3   37.4 
   5 Duster 360              2 21.7   -0.182  21.7      21.6   43.9 
   6 Hornet Sportabout       2 31.8    5.16   31.8      37.6   48.4 
   7 Pontiac Firebird        2 25.1    3.36   25.1      29.3   39.7 
   8 Dodge Challenger        2 20.3    0.910  20.3      21.6   37.4 
   9 AMC Javelin             2 20.4    1.16   20.4      22.0   36.9 
  10 Merc 450SL              2 20.8    1.13   20.8      15.1   50.2 
  # i 22 more rows

  attr(,"effect")$mpg$ale$d1$gear
  # A tibble: 3 x 7
    gear.bin    .n    .y .y_lo .y_mean .y_median   .y_hi
    <ord>    <int> <dbl> <dbl>   <dbl>     <dbl>   <dbl>
  1 three       30 -1.06 -2.54   -1.06    -0.758 -0.0935
  2 four        24  2.66  1.49    2.66     2.42   4.22  
  3 five        10 -1.60 -2.46   -1.60    -1.85  -0.331

  attr(,"effect")$mpg$ale$d1$carb
  # A tibble: 5 x 7
    carb.ceil    .n        .y     .y_lo   .y_mean .y_median     .y_hi
        <dbl> <int>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
  1         1    14  0.000490  0.000490  0.000490  0.000490  0.000490
  2         2    19  0.000176  0.000176  0.000176  0.000176  0.000176
  3         3     9 -0.000137 -0.000137 -0.000137 -0.000137 -0.000137
  4         4    16 -0.000451 -0.000451 -0.000451 -0.000451 -0.000451
  5         8     6 -0.00170  -0.00170  -0.00170  -0.00170  -0.00170

  attr(,"effect")$mpg$ale$d1$wt
  # A tibble: 10 x 7
     wt.ceil    .n      .y   .y_lo .y_mean .y_median   .y_hi
       <dbl> <int>   <dbl>   <dbl>   <dbl>     <dbl>   <dbl>
   1    1.50     1 -18.1   -18.1   -18.1     -18.1   -18.1  
   2    1.94     7 -10.2   -10.2   -10.2     -10.2   -10.2  
   3    2.46     7  -3.51   -3.51   -3.51     -3.51   -3.51 
   4    2.79     7  -0.882  -0.882  -0.882    -0.882  -0.882
   5    3.19     7   2.07    2.07    2.07      2.07    2.07 
   6    3.44     7   3.65    3.65    3.65      3.65    3.65 
   7    3.52     7   4.05    4.05    4.05      4.05    4.05 
   8    3.73     7   4.92    4.92    4.92      4.92    4.92 
   9    4.05     7   6.38    6.38    6.38      6.38    6.38 
  10    5.45     7   9.11    9.11    9.11      9.11    9.11



  attr(,"effect")$mpg$stats
  attr(,"effect")$mpg$stats$d1
  # A tibble: 42 x 8
     statistic estimate p.value term      conf.low  mean median conf.high
     <chr>        <dbl>   <dbl> <chr>        <dbl> <dbl>  <dbl>     <dbl>
   1 aled             0     1   vs               0     0      0         0
   2 aler_min         0     1   vs               0     0      0         0
   3 aler_max         0     1   vs               0     0      0         0
   4 naled            0     0.6 vs               0     0      0         0
   5 naler_min        0     1   vs               0     0      0         0
   6 naler_max        0     0.6 vs               0     0      0         0
   7 aled             0     1   continent        0     0      0         0
   8 aler_min         0     1   continent        0     0      0         0
   9 aler_max         0     1   continent        0     0      0         0
  10 naled            0     0.6 continent        0     0      0         0
  # i 32 more rows


  attr(,"effect")$mpg$boot_data
  NULL


  attr(,"params")
  attr(,"params")$max_d
  [1] 1

  attr(,"params")$ordered_x_cols
  attr(,"params")$ordered_x_cols$d1
  [1] "vs"        "continent" "am"        "model"     "gear"      "carb"     
  [7] "wt"

  attr(,"params")$ordered_x_cols$d2
  character(0)


  attr(,"params")$requested_x_cols
  attr(,"params")$requested_x_cols$d1
  [1] "vs"        "continent" "am"        "model"     "gear"      "carb"     
  [7] "wt"

  attr(,"params")$requested_x_cols$d2
  character(0)


  attr(,"params")$y_cats
  [1] "mpg"

  attr(,"params")$y_summary
                  mpg
  min        10.39108
  1%         10.39108
  2.5%       10.40000
  5%         10.88271
  10%        14.33418
  20%        15.16500
  25%        15.43921
  30%        15.79628
  40%        17.83840
  aler_lo_lo 19.18669
  aler_lo    19.18797
  50%        19.20000
  mean       20.09462
  aler_hi    19.20859
  aler_hi_hi 19.20864
  60%        21.00000
  70%        21.51193
  75%        22.80000
  80%        24.48680
  90%        30.31124
  95%        32.14486
  97.5%      33.08402
  99%        33.84876
  max        33.84876

  attr(,"params")$model
  attr(,"params")$model$class
  [1] "gam" "glm" "lm"

  attr(,"params")$model$call
  [1] "mgcv::gam(formula = mpg ~ model + s(wt) + am + gear + carb, data = test_cars)"

  attr(,"params")$model$print
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nEstimated degrees of freedom:\n8.03  total = 41.03 \n\nGCV score: 0.0001770391     rank: 42/45"

  attr(,"params")$model$summary
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nParametric coefficients:\n                           Estimate Std. Error  t value Pr(>|t|)    \n(Intercept)               1.432e+01  1.353e-01  105.784  < 2e-16 ***\nmodelCadillac Fleetwood  -9.910e+00  1.259e+00   -7.873 5.68e-08 ***\nmodelCamaro Z28          -3.700e+00  7.268e-02  -50.911  < 2e-16 ***\nmodelChrysler Imperial   -5.777e+00  1.276e+00   -4.526 0.000152 ***\nmodelDatsun 710          -3.793e+00  1.131e-01  -33.550  < 2e-16 ***\nmodelDodge Challenger    -1.266e-01  2.060e-02   -6.147 2.87e-06 ***\nmodelDuster 360          -1.547e+00  2.851e-02  -54.276  < 2e-16 ***\nmodelFerrari Dino        -4.088e+00  1.542e-01  -26.506  < 2e-16 ***\nmodelFiat 128             7.211e+00  9.518e-02   75.763  < 2e-16 ***\nmodelFiat X1-9            5.916e+00  1.941e-01   30.488  < 2e-16 ***\nmodelFord Pantera L      -1.094e+01  1.737e-01  -63.000  < 2e-16 ***\nmodelHonda Civic          1.474e+01  2.896e-01   50.893  < 2e-16 ***\nmodelHornet 4 Drive       7.569e+00  5.315e-02  142.406  < 2e-16 ***\nmodelHornet Sportabout    3.468e+00  9.616e-03  360.698  < 2e-16 ***\nmodelLincoln Continental -1.023e+01  1.279e+00   -7.998 4.34e-08 ***\nmodelLotus Europa         2.341e+01  3.392e-01   69.015  < 2e-16 ***\nmodelMaserati Bora       -1.408e+01  1.903e-01  -74.006  < 2e-16 ***\nmodelMazda RX4           -8.359e+00  1.638e-01  -51.017  < 2e-16 ***\nmodelMazda RX4 Wag       -1.030e+01  1.761e-01  -58.494  < 2e-16 ***\nmodelMerc 230             2.481e+00  5.506e-02   45.064  < 2e-16 ***\nmodelMerc 240D            3.804e+00  5.586e-02   68.099  < 2e-16 ***\nmodelMerc 280            -2.984e+00  6.794e-02  -43.926  < 2e-16 ***\nmodelMerc 280C           -4.382e+00  6.668e-02  -65.723  < 2e-16 ***\nmodelMerc 450SE          -1.661e+00  1.075e-01  -15.448 1.26e-13 ***\nmodelMerc 450SL           7.892e-01  5.311e-02   14.861 2.83e-13 ***\nmodelMerc 450SLC         -1.524e+00  6.416e-02  -23.749  < 2e-16 ***\nmodelPontiac Firebird     2.178e+00  7.002e-02   31.102  < 2e-16 ***\nmodelPorsche 914-2        8.306e+00  1.409e-01   58.945  < 2e-16 ***\nmodelToyota Corolla       1.419e+01  2.372e-01   59.809  < 2e-16 ***\nmodelToyota Corona        1.342e+01  2.208e-01   60.795  < 2e-16 ***\nmodelValiant              2.760e+00  1.050e-02  262.897  < 2e-16 ***\nmodelVolvo 142E          -9.189e+00  1.720e-01  -53.428  < 2e-16 ***\namTRUE                    1.302e+01  1.792e-01   72.629  < 2e-16 ***\ngear.L                    1.571e-01  2.703e-02    5.811 6.42e-06 ***\ngear.Q                   -5.584e+00  4.818e-02 -115.914  < 2e-16 ***\ncarb                     -3.135e-04  4.119e-03   -0.076 0.939977    \n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nApproximate significance of smooth terms:\n        edf Ref.df   F p-value    \ns(wt) 8.027  8.693 449  <2e-16 ***\n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nRank: 42/45\nR-sq.(adj) =      1   Deviance explained =  100%\nGCV = 0.00017704  Scale est. = 6.3549e-05  n = 64"


  attr(,"params")$data
  attr(,"params")$data$data_sample
  # A tibble: 64 x 8
       mpg vs    continent     am    model             gear   carb    wt
     <dbl> <lgl> <fct>         <lgl> <chr>             <ord> <int> <dbl>
   1  21   FALSE Asia          TRUE  Mazda RX4         four      4  2.62
   2  21   FALSE Asia          TRUE  Mazda RX4 Wag     four      4  2.88
   3  22.8 TRUE  Asia          TRUE  Datsun 710        four      1  2.32
   4  21.4 TRUE  North America FALSE Hornet 4 Drive    three     1  3.22
   5  18.7 FALSE North America FALSE Hornet Sportabout three     2  3.44
   6  18.1 TRUE  North America FALSE Valiant           three     1  3.46
   7  14.3 FALSE North America FALSE Duster 360        three     4  3.57
   8  24.4 TRUE  Europe        FALSE Merc 240D         four      2  3.19
   9  22.8 TRUE  Europe        FALSE Merc 230          four      2  3.15
  10  19.2 TRUE  Europe        FALSE Merc 280          four      4  3.44
  # i 54 more rows

  attr(,"params")$data$y_vals_sample
             mpg
   [1,] 21.00000
   [2,] 21.00000
   [3,] 22.80000
   [4,] 21.40000
   [5,] 18.70000
   [6,] 18.10000
   [7,] 14.30000
   [8,] 24.40000
   [9,] 22.80000
  [10,] 19.20000
  [11,] 17.80000
  [12,] 16.40000
  [13,] 17.30000
  [14,] 15.20000
  [15,] 10.40000
  [16,] 10.40000
  [17,] 14.70000
  [18,] 32.40000
  [19,] 30.40000
  [20,] 33.90000
  [21,] 21.50000
  [22,] 15.50000
  [23,] 15.20000
  [24,] 13.30000
  [25,] 19.20000
  [26,] 27.30000
  [27,] 26.00000
  [28,] 30.40000
  [29,] 15.80000
  [30,] 19.70000
  [31,] 15.00000
  [32,] 21.40000
  [33,] 21.16661
  [34,] 20.90151
  [35,] 22.74169
  [36,] 21.43118
  [37,] 18.85267
  [38,] 17.99201
  [39,] 14.41394
  [40,] 24.61700
  [41,] 22.87332
  [42,] 19.24958
  [43,] 17.64400
  [44,] 16.30356
  [45,] 17.18809
  [46,] 15.25685
  [47,] 10.37589
  [48,] 10.45613
  [49,] 14.69932
  [50,] 32.54102
  [51,] 30.69908
  [52,] 33.81866
  [53,] 21.61930
  [54,] 15.63476
  [55,] 15.11249
  [56,] 13.34035
  [57,] 19.05621
  [58,] 27.17290
  [59,] 25.94078
  [60,] 30.10414
  [61,] 15.76283
  [62,] 19.84566
  [63,] 14.95210
  [64,] 21.39233

  attr(,"params")$data$nrow
  [1] 64


  attr(,"params")$y_col
  [1] "mpg"

  attr(,"params")$parallel
  [1] 0

  attr(,"params")$model_packages
  NULL

  attr(,"params")$output_stats
  [1] TRUE

  attr(,"params")$output_boot_data
  [1] FALSE

  attr(,"params")$pred_fun
  [1] "function(object, newdata, type = pred_type) {\n      stats::predict(object = object, newdata = newdata, type = type)\n    }"

  attr(,"params")$pred_type
  [1] "response"

  attr(,"params")$p_values
  <ale::ALEpDist>
   @ rand_stats           :List of 1
   .. $ mpg: tibble [10 x 6] (S3: tbl_df/tbl/data.frame)
   ..  ..$ aled     : num [1:10] 0.000484 0.002108 0.001961 0.000908 0.000352 ...
   ..  ..$ aler_min : num [1:10] -0.0033 -0.00659 -0.00644 -0.00363 -0.00166 ...
   ..  ..$ aler_max : num [1:10] 0.00201 0.00835 0.00866 0.00524 0.00139 ...
   ..  ..$ naled    : num [1:10] 0 0.3418 0.2197 0.0244 0 ...
   ..  ..$ naler_min: num [1:10] 0 -1.56 -1.56 -1.56 0 ...
   ..  ..$ naler_max: num [1:10] 0 1.56 1.56 1.56 0 ...
   @ residual_distribution: 'univariateML' Named num [1:2] 1.30e-11 3.59e-03
   .. - attr(*, "logLik")= num 252
   .. - attr(*, "call")= language f(x = x, na.rm = na.rm)
   .. - attr(*, "n")= int 64
   .. - attr(*, "model")= chr "Laplace"
   .. - attr(*, "density")= chr "extraDistr::dlaplace"
   .. - attr(*, "support")= num [1:2] -Inf Inf
   .. - attr(*, "names")= chr [1:2] "mu" "sigma"
   .. - attr(*, "default")= num [1:2] 0 1
   .. - attr(*, "continuous")= logi TRUE
   @ residuals            : NULL
   @ params               :List of 11
   .. $ model                        :List of 4
   ..  ..$ class  : chr [1:3] "gam" "glm" "lm"
   ..  ..$ call   : chr "mgcv::gam(formula = mpg ~ model + s(wt) + am + gear + carb, data = test_cars)"
   ..  ..$ print  : chr "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nEstimated "| __truncated__
   ..  ..$ summary: chr "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nParametric"| __truncated__
   .. $ y_col                        : chr "mpg"
   .. $ rand_it                      : num 10
   .. $ parallel                     : num 0
   .. $ model_packages               : NULL
   .. $ random_model_call_string     : NULL
   .. $ random_model_call_string_vars: chr(0) 
   .. $ positive                     : logi TRUE
   .. $ seed                         : num 0
   .. $ rand_it_ok                   : int 10
   .. $ exactness                    : chr "invalid"

  attr(,"params")$aler_alpha
  [1] 0.01 0.05

  attr(,"params")$max_num_bins
  [1] 10

  attr(,"params")$boot_it
  [1] 3

  attr(,"params")$boot_alpha
  [1] 0.05

  attr(,"params")$boot_centre
  [1] "mean"

  attr(,"params")$seed
  [1] 0

  attr(,"params")$y_type
  [1] "numeric"

  attr(,"params")$sample_size
  [1] 500
Code
  unclass(set_names(map(stats_names, function(.stat) {
    value_to_p(pd@rand_stats$mpg, .stat, test_vals)
  }), stats_names))
Output
  $aled
   [1] 1 1 1 1 1 0 0 0 0 0 0

  $aler_min
   [1] 0 0 0 0 1 1 1 1 1 1 1

  $aler_max
   [1] 1 1 1 1 1 0 0 0 0 0 0

  $naled
   [1] 1.0 1.0 1.0 1.0 0.6 0.4 0.3 0.0 0.0 0.0 0.0

  $naler_min
   [1] 0.0 0.0 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0

  $naler_max
   [1] 1.0 1.0 1.0 1.0 0.6 0.6 0.6 0.6 0.6 0.0 0.0

Surrogate ALEpDist works

Code
  unclass(pd)
Output
  <object>
  attr(,"S7_class")
  <ale::ALEpDist> class
  @ parent     : <S7_object>
  @ constructor: function(model, data, ..., y_col, rand_it, surrogate, parallel, model_packages, random_model_call_string, random_model_call_string_vars, positive, pred_fun, pred_type, output_residuals, seed, silent, .skip_validation) {...}
  @ validator  : <NULL>
  @ properties :
   $ rand_stats           : <list>            
   $ residual_distribution: S3<univariateML>  
   $ residuals            : <double> or <NULL>
   $ params               : <list>            
  attr(,"rand_stats")
  attr(,"rand_stats")$mpg
  # A tibble: 100 x 6
        aled aler_min aler_max naled naler_min naler_max
       <dbl>    <dbl>    <dbl> <dbl>     <dbl>     <dbl>
   1 0.00199  -0.0112  0.00727 0.366     -1.56      1.56
   2 0.00394  -0.0118  0.0148  0.708     -1.56      1.56
   3 0.00425  -0.0170  0.0126  0.708     -1.56      1.56
   4 0.00647  -0.0215  0.0304  0.708     -1.56      1.56
   5 0.00365  -0.0149  0.0124  0.537     -1.56      1.56
   6 0.00281  -0.0121  0.0100  0.366     -1.56      1.56
   7 0.00599  -0.0172  0.0227  0.879     -1.56      1.56
   8 0.00574  -0.0333  0.0175  0.708     -1.56      1.56
   9 0.00733  -0.0321  0.0203  0.879     -1.56      1.56
  10 0.00729  -0.0228  0.0257  1.05      -1.56      1.56
  # i 90 more rows

  attr(,"residual_distribution")
  Maximum likelihood estimates for the Laplace model 
         mu      sigma  
  1.303e-11  3.587e-03  
  attr(,"residuals")
   [1] -9.470698e-04 -1.130145e-03 -3.078035e-03  7.415332e-04 -4.678952e-03
   [6]  7.516518e-04  2.728091e-03 -8.853029e-03 -3.016706e-04 -1.794893e-03
  [11] -3.673897e-03 -2.816578e-03  5.414042e-03  2.979146e-03  2.219206e-03
  [16]  8.324011e-04 -4.976941e-05 -1.115543e-02  1.437735e-03  2.200997e-03
  [21]  2.625747e-03  5.178720e-04 -9.802341e-03  7.118944e-03  5.255702e-03
  [26] -9.746617e-03 -2.976337e-03  6.542735e-03 -8.071930e-03  4.016990e-03
  [31] -2.747836e-04 -6.032700e-05  9.470698e-04  1.130145e-03  3.078035e-03
  [36] -7.415332e-04  4.678952e-03 -7.516518e-04 -2.728091e-03  8.853029e-03
  [41]  3.016706e-04  1.794893e-03  3.673897e-03  2.816578e-03 -5.414042e-03
  [46] -2.979146e-03 -2.219206e-03 -8.324011e-04  4.976944e-05  1.115543e-02
  [51] -1.437735e-03 -2.200997e-03 -2.625747e-03 -5.178720e-04  9.802341e-03
  [56] -7.118944e-03 -5.255702e-03  9.746617e-03  2.976337e-03 -6.542735e-03
  [61]  8.071930e-03 -4.016990e-03  2.747836e-04  6.032702e-05
  attr(,"params")
  attr(,"params")$model
  attr(,"params")$model$class
  [1] "gam" "glm" "lm"

  attr(,"params")$model$call
  [1] "mgcv::gam(formula = mpg ~ model + s(wt) + am + gear + carb, data = test_cars)"

  attr(,"params")$model$print
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nEstimated degrees of freedom:\n8.03  total = 41.03 \n\nGCV score: 0.0001770391     rank: 42/45"

  attr(,"params")$model$summary
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nParametric coefficients:\n                           Estimate Std. Error  t value Pr(>|t|)    \n(Intercept)               1.432e+01  1.353e-01  105.784  < 2e-16 ***\nmodelCadillac Fleetwood  -9.910e+00  1.259e+00   -7.873 5.68e-08 ***\nmodelCamaro Z28          -3.700e+00  7.268e-02  -50.911  < 2e-16 ***\nmodelChrysler Imperial   -5.777e+00  1.276e+00   -4.526 0.000152 ***\nmodelDatsun 710          -3.793e+00  1.131e-01  -33.550  < 2e-16 ***\nmodelDodge Challenger    -1.266e-01  2.060e-02   -6.147 2.87e-06 ***\nmodelDuster 360          -1.547e+00  2.851e-02  -54.276  < 2e-16 ***\nmodelFerrari Dino        -4.088e+00  1.542e-01  -26.506  < 2e-16 ***\nmodelFiat 128             7.211e+00  9.518e-02   75.763  < 2e-16 ***\nmodelFiat X1-9            5.916e+00  1.941e-01   30.488  < 2e-16 ***\nmodelFord Pantera L      -1.094e+01  1.737e-01  -63.000  < 2e-16 ***\nmodelHonda Civic          1.474e+01  2.896e-01   50.893  < 2e-16 ***\nmodelHornet 4 Drive       7.569e+00  5.315e-02  142.406  < 2e-16 ***\nmodelHornet Sportabout    3.468e+00  9.616e-03  360.698  < 2e-16 ***\nmodelLincoln Continental -1.023e+01  1.279e+00   -7.998 4.34e-08 ***\nmodelLotus Europa         2.341e+01  3.392e-01   69.015  < 2e-16 ***\nmodelMaserati Bora       -1.408e+01  1.903e-01  -74.006  < 2e-16 ***\nmodelMazda RX4           -8.359e+00  1.638e-01  -51.017  < 2e-16 ***\nmodelMazda RX4 Wag       -1.030e+01  1.761e-01  -58.494  < 2e-16 ***\nmodelMerc 230             2.481e+00  5.506e-02   45.064  < 2e-16 ***\nmodelMerc 240D            3.804e+00  5.586e-02   68.099  < 2e-16 ***\nmodelMerc 280            -2.984e+00  6.794e-02  -43.926  < 2e-16 ***\nmodelMerc 280C           -4.382e+00  6.668e-02  -65.723  < 2e-16 ***\nmodelMerc 450SE          -1.661e+00  1.075e-01  -15.448 1.26e-13 ***\nmodelMerc 450SL           7.892e-01  5.311e-02   14.861 2.83e-13 ***\nmodelMerc 450SLC         -1.524e+00  6.416e-02  -23.749  < 2e-16 ***\nmodelPontiac Firebird     2.178e+00  7.002e-02   31.102  < 2e-16 ***\nmodelPorsche 914-2        8.306e+00  1.409e-01   58.945  < 2e-16 ***\nmodelToyota Corolla       1.419e+01  2.372e-01   59.809  < 2e-16 ***\nmodelToyota Corona        1.342e+01  2.208e-01   60.795  < 2e-16 ***\nmodelValiant              2.760e+00  1.050e-02  262.897  < 2e-16 ***\nmodelVolvo 142E          -9.189e+00  1.720e-01  -53.428  < 2e-16 ***\namTRUE                    1.302e+01  1.792e-01   72.629  < 2e-16 ***\ngear.L                    1.571e-01  2.703e-02    5.811 6.42e-06 ***\ngear.Q                   -5.584e+00  4.818e-02 -115.914  < 2e-16 ***\ncarb                     -3.135e-04  4.119e-03   -0.076 0.939977    \n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nApproximate significance of smooth terms:\n        edf Ref.df   F p-value    \ns(wt) 8.027  8.693 449  <2e-16 ***\n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nRank: 42/45\nR-sq.(adj) =      1   Deviance explained =  100%\nGCV = 0.00017704  Scale est. = 6.3549e-05  n = 64"


  attr(,"params")$y_col
  [1] "mpg"

  attr(,"params")$rand_it
  [1] 3

  attr(,"params")$parallel
  [1] 0

  attr(,"params")$model_packages
  NULL

  attr(,"params")$random_model_call_string
  NULL

  attr(,"params")$random_model_call_string_vars
  character(0)

  attr(,"params")$positive
  [1] TRUE

  attr(,"params")$seed
  [1] 0

  attr(,"params")$rand_it_ok
  [1] 100

  attr(,"params")$exactness
  [1] "surrogate"
Code
  unclass(set_names(map(stats_names, function(.stat) {
    p_to_random_value(pd@rand_stats$mpg, .stat, test_p)
  }), stats_names))
Output
  $aled
             0        0.001         0.01         0.01         0.05          0.1 
  2.145276e-02 2.092763e-02 1.620142e-02 1.620142e-02 1.331799e-02 1.160576e-02 
           0.5            1 
  5.855495e-03 2.343212e-05

  $aler_min
              0         0.001          0.01          0.01          0.05 
  -8.018319e-02 -7.889883e-02 -6.733957e-02 -6.733957e-02 -4.856189e-02 
            0.1           0.5             1 
  -4.264222e-02 -1.985118e-02 -8.389436e-05

  $aler_max
             0        0.001         0.01         0.01         0.05          0.1 
  6.705638e-02 6.689973e-02 6.548988e-02 6.548988e-02 5.404877e-02 5.006009e-02 
           0.5            1 
  2.010266e-02 5.471472e-05

  $naled
          0     0.001      0.01      0.01      0.05       0.1       0.5         1 
  1.3916016 1.3916016 1.3916016 1.3916016 1.2207031 1.2207031 0.7080078 0.0000000

  $naler_min
        0   0.001    0.01    0.01    0.05     0.1     0.5       1 
  -1.5625 -1.5625 -1.5625 -1.5625 -1.5625 -1.5625 -1.5625  0.0000

  $naler_max
       0  0.001   0.01   0.01   0.05    0.1    0.5      1 
  3.1250 3.1250 3.1250 3.1250 3.1250 3.1250 1.5625 0.0000

ALEpDist works with custom random_model_call_string

Code
  unclass(pd)
Output
  <object>
  attr(,"S7_class")
  <ale::ALEpDist> class
  @ parent     : <S7_object>
  @ constructor: function(model, data, ..., y_col, rand_it, surrogate, parallel, model_packages, random_model_call_string, random_model_call_string_vars, positive, pred_fun, pred_type, output_residuals, seed, silent, .skip_validation) {...}
  @ validator  : <NULL>
  @ properties :
   $ rand_stats           : <list>            
   $ residual_distribution: S3<univariateML>  
   $ residuals            : <double> or <NULL>
   $ params               : <list>            
  attr(,"rand_stats")
  attr(,"rand_stats")$mpg
  # A tibble: 3 x 6
        aled aler_min aler_max naled naler_min naler_max
       <dbl>    <dbl>    <dbl> <dbl>     <dbl>     <dbl>
  1 0.000484 -0.00330  0.00201 0          0         0   
  2 0.00211  -0.00659  0.00835 0.342     -1.56      1.56
  3 0.00196  -0.00644  0.00866 0.220     -1.56      1.56

  attr(,"residual_distribution")
  Maximum likelihood estimates for the Laplace model 
         mu      sigma  
  1.303e-11  3.587e-03  
  attr(,"residuals")
   [1] -9.470698e-04 -1.130145e-03 -3.078035e-03  7.415332e-04 -4.678952e-03
   [6]  7.516518e-04  2.728091e-03 -8.853029e-03 -3.016706e-04 -1.794893e-03
  [11] -3.673897e-03 -2.816578e-03  5.414042e-03  2.979146e-03  2.219206e-03
  [16]  8.324011e-04 -4.976941e-05 -1.115543e-02  1.437735e-03  2.200997e-03
  [21]  2.625747e-03  5.178720e-04 -9.802341e-03  7.118944e-03  5.255702e-03
  [26] -9.746617e-03 -2.976337e-03  6.542735e-03 -8.071930e-03  4.016990e-03
  [31] -2.747836e-04 -6.032700e-05  9.470698e-04  1.130145e-03  3.078035e-03
  [36] -7.415332e-04  4.678952e-03 -7.516518e-04 -2.728091e-03  8.853029e-03
  [41]  3.016706e-04  1.794893e-03  3.673897e-03  2.816578e-03 -5.414042e-03
  [46] -2.979146e-03 -2.219206e-03 -8.324011e-04  4.976944e-05  1.115543e-02
  [51] -1.437735e-03 -2.200997e-03 -2.625747e-03 -5.178720e-04  9.802341e-03
  [56] -7.118944e-03 -5.255702e-03  9.746617e-03  2.976337e-03 -6.542735e-03
  [61]  8.071930e-03 -4.016990e-03  2.747836e-04  6.032702e-05
  attr(,"params")
  attr(,"params")$model
  attr(,"params")$model$class
  [1] "gam" "glm" "lm"

  attr(,"params")$model$call
  [1] "mgcv::gam(formula = mpg ~ model + s(wt) + am + gear + carb, data = test_cars)"

  attr(,"params")$model$print
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nEstimated degrees of freedom:\n8.03  total = 41.03 \n\nGCV score: 0.0001770391     rank: 42/45"

  attr(,"params")$model$summary
  [1] "\nFamily: gaussian \nLink function: identity \n\nFormula:\nmpg ~ model + s(wt) + am + gear + carb\n\nParametric coefficients:\n                           Estimate Std. Error  t value Pr(>|t|)    \n(Intercept)               1.432e+01  1.353e-01  105.784  < 2e-16 ***\nmodelCadillac Fleetwood  -9.910e+00  1.259e+00   -7.873 5.68e-08 ***\nmodelCamaro Z28          -3.700e+00  7.268e-02  -50.911  < 2e-16 ***\nmodelChrysler Imperial   -5.777e+00  1.276e+00   -4.526 0.000152 ***\nmodelDatsun 710          -3.793e+00  1.131e-01  -33.550  < 2e-16 ***\nmodelDodge Challenger    -1.266e-01  2.060e-02   -6.147 2.87e-06 ***\nmodelDuster 360          -1.547e+00  2.851e-02  -54.276  < 2e-16 ***\nmodelFerrari Dino        -4.088e+00  1.542e-01  -26.506  < 2e-16 ***\nmodelFiat 128             7.211e+00  9.518e-02   75.763  < 2e-16 ***\nmodelFiat X1-9            5.916e+00  1.941e-01   30.488  < 2e-16 ***\nmodelFord Pantera L      -1.094e+01  1.737e-01  -63.000  < 2e-16 ***\nmodelHonda Civic          1.474e+01  2.896e-01   50.893  < 2e-16 ***\nmodelHornet 4 Drive       7.569e+00  5.315e-02  142.406  < 2e-16 ***\nmodelHornet Sportabout    3.468e+00  9.616e-03  360.698  < 2e-16 ***\nmodelLincoln Continental -1.023e+01  1.279e+00   -7.998 4.34e-08 ***\nmodelLotus Europa         2.341e+01  3.392e-01   69.015  < 2e-16 ***\nmodelMaserati Bora       -1.408e+01  1.903e-01  -74.006  < 2e-16 ***\nmodelMazda RX4           -8.359e+00  1.638e-01  -51.017  < 2e-16 ***\nmodelMazda RX4 Wag       -1.030e+01  1.761e-01  -58.494  < 2e-16 ***\nmodelMerc 230             2.481e+00  5.506e-02   45.064  < 2e-16 ***\nmodelMerc 240D            3.804e+00  5.586e-02   68.099  < 2e-16 ***\nmodelMerc 280            -2.984e+00  6.794e-02  -43.926  < 2e-16 ***\nmodelMerc 280C           -4.382e+00  6.668e-02  -65.723  < 2e-16 ***\nmodelMerc 450SE          -1.661e+00  1.075e-01  -15.448 1.26e-13 ***\nmodelMerc 450SL           7.892e-01  5.311e-02   14.861 2.83e-13 ***\nmodelMerc 450SLC         -1.524e+00  6.416e-02  -23.749  < 2e-16 ***\nmodelPontiac Firebird     2.178e+00  7.002e-02   31.102  < 2e-16 ***\nmodelPorsche 914-2        8.306e+00  1.409e-01   58.945  < 2e-16 ***\nmodelToyota Corolla       1.419e+01  2.372e-01   59.809  < 2e-16 ***\nmodelToyota Corona        1.342e+01  2.208e-01   60.795  < 2e-16 ***\nmodelValiant              2.760e+00  1.050e-02  262.897  < 2e-16 ***\nmodelVolvo 142E          -9.189e+00  1.720e-01  -53.428  < 2e-16 ***\namTRUE                    1.302e+01  1.792e-01   72.629  < 2e-16 ***\ngear.L                    1.571e-01  2.703e-02    5.811 6.42e-06 ***\ngear.Q                   -5.584e+00  4.818e-02 -115.914  < 2e-16 ***\ncarb                     -3.135e-04  4.119e-03   -0.076 0.939977    \n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nApproximate significance of smooth terms:\n        edf Ref.df   F p-value    \ns(wt) 8.027  8.693 449  <2e-16 ***\n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nRank: 42/45\nR-sq.(adj) =      1   Deviance explained =  100%\nGCV = 0.00017704  Scale est. = 6.3549e-05  n = 64"


  attr(,"params")$y_col
  [1] "mpg"

  attr(,"params")$rand_it
  [1] 3

  attr(,"params")$parallel
  [1] 0

  attr(,"params")$model_packages
  NULL

  attr(,"params")$random_model_call_string
  [1] "mgcv::gam(\n        mpg ~ model + s(wt) + am + gear + carb + random_variable,\n        data = it.rand_data\n      )"

  attr(,"params")$random_model_call_string_vars
  [1] "rmcsv"

  attr(,"params")$positive
  [1] TRUE

  attr(,"params")$seed
  [1] 0

  attr(,"params")$rand_it_ok
  [1] 3

  attr(,"params")$exactness
  [1] "invalid"

ALEpDist works with binary outcome

Code
  unclass(pd)
Output
  <object>
  attr(,"S7_class")
  <ale::ALEpDist> class
  @ parent     : <S7_object>
  @ constructor: function(model, data, ..., y_col, rand_it, surrogate, parallel, model_packages, random_model_call_string, random_model_call_string_vars, positive, pred_fun, pred_type, output_residuals, seed, silent, .skip_validation) {...}
  @ validator  : <NULL>
  @ properties :
   $ rand_stats           : <list>            
   $ residual_distribution: S3<univariateML>  
   $ residuals            : <double> or <NULL>
   $ params               : <list>            
  attr(,"rand_stats")
  attr(,"rand_stats")$vs
  # A tibble: 10 x 6
         aled  aler_min aler_max naled naler_min naler_max
        <dbl>     <dbl>    <dbl> <dbl>     <dbl>     <dbl>
   1 5.16e-25 -1.32e-24 9.89e-25  3.64     -7.81      6.25
   2 2.70e-25 -6.53e-25 6.73e-25  2.56     -1.56      4.69
   3 1.43e-25 -3.61e-25 3.58e-25  2.22     -1.56      4.69
   4 2.86e-25 -5.04e-25 4.75e-25  2.81     -1.56      4.69
   5 8.00e-23 -1.39e-22 1.57e-22 23.8     -50         6.25
   6 8.44e-26 -2.01e-25 1.96e-25  2.17     -1.56      3.12
   7 1.12e-23 -2.59e-23 2.06e-23 22.8     -50         6.25
   8 1.28e-21 -2.04e-21 2.84e-21 26.1     -50         6.25
   9 0         0        0         0         0         0   
  10 6.51e-24 -1.16e-23 1.15e-23 19.7     -50         6.25

  attr(,"residual_distribution")
  Maximum likelihood estimates for the Uniform model 
         min         max  
  -3.926e-13   3.926e-13  
  attr(,"params")
  attr(,"params")$model
  attr(,"params")$model$class
  [1] "gam" "glm" "lm"

  attr(,"params")$model$call
  [1] "mgcv::gam(formula = vs ~ model + s(wt) + am + gear + carb, family = stats::binomial(), \n    data = test_cars)"

  attr(,"params")$model$print
  [1] "\nFamily: binomial \nLink function: logit \n\nFormula:\nvs ~ model + s(wt) + am + gear + carb\n\nEstimated degrees of freedom:\n1  total = 34 \n\nUBRE score: 0.0625     rank: 42/45"

  attr(,"params")$model$summary
  [1] "\nFamily: binomial \nLink function: logit \n\nFormula:\nvs ~ model + s(wt) + am + gear + carb\n\nParametric coefficients:\n                           Estimate Std. Error z value Pr(>|z|)\n(Intercept)               9.522e+00  1.068e+06       0        1\nmodelCadillac Fleetwood   1.310e-09  2.420e+07       0        1\nmodelCamaro Z28           2.970e-10  5.648e+06       0        1\nmodelChrysler Imperial    1.380e-09  2.550e+07       0        1\nmodelDatsun 710           7.775e-08  9.376e+06       0        1\nmodelDodge Challenger     7.967e-11  1.760e+06       0        1\nmodelDuster 360           1.078e-10  2.390e+06       0        1\nmodelFerrari Dino        -5.713e+01  1.689e+07       0        1\nmodelFiat 128             4.992e-08  7.891e+06       0        1\nmodelFiat X1-9            8.312e-08  4.293e+06       0        1\nmodelFord Pantera L      -5.713e+01  2.207e+07       0        1\nmodelHonda Civic          0.000e+00  0.000e+00     NaN      NaN\nmodelHornet 4 Drive       5.713e+01  2.914e+06       0        1\nmodelHornet Sportabout    1.906e-11  1.054e+06       0        1\nmodelLincoln Continental  1.451e-09  2.680e+07       0        1\nmodelLotus Europa         0.000e+00  0.000e+00     NaN      NaN\nmodelMaserati Bora       -5.713e+01  2.726e+07       0        1\nmodelMazda RX4           -5.713e+01  1.339e+07       0        1\nmodelMazda RX4 Wag       -5.713e+01  1.657e+07       0        1\nmodelMerc 230            -1.764e-05  1.169e+06       0        1\nmodelMerc 240D            0.000e+00  0.000e+00     NaN      NaN\nmodelMerc 280             3.537e-08  3.387e+06       0        1\nmodelMerc 280C           -1.763e-05  3.113e+06       0        1\nmodelMerc 450SE           4.560e-10  8.472e+06       0        1\nmodelMerc 450SL           2.063e-10  3.993e+06       0        1\nmodelMerc 450SLC          2.581e-10  4.887e+06       0        1\nmodelPontiac Firebird     2.934e-10  5.495e+06       0        1\nmodelPorsche 914-2       -5.713e+01  8.485e+06       0        1\nmodelToyota Corolla      -1.764e-05  3.047e+06       0        1\nmodelToyota Corona        5.713e+01  1.270e+07       0        1\nmodelValiant              5.713e+01  1.128e+06       0        1\nmodelVolvo 142E           8.495e-07  1.543e+07       0        1\namTRUE                   -6.645e-09  2.111e+07       0        1\ngear.L                    4.040e+01  3.334e+06       0        1\ngear.Q                   -2.332e+01  7.942e+05       0        1\ncarb                      3.703e-12  4.368e+05       0        1\n\nApproximate significance of smooth terms:\n      edf Ref.df Chi.sq p-value\ns(wt)   1      1      0       1\n\nRank: 42/45\nR-sq.(adj) =      1   Deviance explained =  100%\nUBRE = 0.0625  Scale est. = 1         n = 64"


  attr(,"params")$y_col
  [1] "vs"

  attr(,"params")$rand_it
  [1] 10

  attr(,"params")$parallel
  [1] 0

  attr(,"params")$model_packages
  NULL

  attr(,"params")$random_model_call_string
  NULL

  attr(,"params")$random_model_call_string_vars
  character(0)

  attr(,"params")$positive
  [1] TRUE

  attr(,"params")$seed
  [1] 0

  attr(,"params")$rand_it_ok
  [1] 10

  attr(,"params")$exactness
  [1] "invalid"

ALEpDist works with categorical outcome

Code
  unclass(pd)
Output
  <object>
  attr(,"S7_class")
  <ale::ALEpDist> class
  @ parent     : <S7_object>
  @ constructor: function(model, data, ..., y_col, rand_it, surrogate, parallel, model_packages, random_model_call_string, random_model_call_string_vars, positive, pred_fun, pred_type, output_residuals, seed, silent, .skip_validation) {...}
  @ validator  : <NULL>
  @ properties :
   $ rand_stats           : <list>            
   $ residual_distribution: S3<univariateML>  
   $ residuals            : <double> or <NULL>
   $ params               : <list>            
  attr(,"rand_stats")
  attr(,"rand_stats")$Asia
  # A tibble: 10 x 6
      aled aler_min aler_max naled naler_min naler_max
     <dbl>    <dbl>    <dbl> <dbl>     <dbl>     <dbl>
   1     0        0        0     0         0         0
   2     0        0        0     0         0         0
   3     0        0        0     0         0         0
   4     0        0        0     0         0         0
   5     0        0        0     0         0         0
   6     0        0        0     0         0         0
   7     0        0        0     0         0         0
   8     0        0        0     0         0         0
   9     0        0        0     0         0         0
  10     0        0        0     0         0         0

  attr(,"rand_stats")$Europe
  # A tibble: 10 x 6
      aled aler_min aler_max naled naler_min naler_max
     <dbl>    <dbl>    <dbl> <dbl>     <dbl>     <dbl>
   1     0        0        0     0         0         0
   2     0        0        0     0         0         0
   3     0        0        0     0         0         0
   4     0        0        0     0         0         0
   5     0        0        0     0         0         0
   6     0        0        0     0         0         0
   7     0        0        0     0         0         0
   8     0        0        0     0         0         0
   9     0        0        0     0         0         0
  10     0        0        0     0         0         0

  attr(,"rand_stats")$`North America`
  # A tibble: 10 x 6
      aled aler_min aler_max naled naler_min naler_max
     <dbl>    <dbl>    <dbl> <dbl>     <dbl>     <dbl>
   1     0        0        0     0         0         0
   2     0        0        0     0         0         0
   3     0        0        0     0         0         0
   4     0        0        0     0         0         0
   5     0        0        0     0         0         0
   6     0        0        0     0         0         0
   7     0        0        0     0         0         0
   8     0        0        0     0         0         0
   9     0        0        0     0         0         0
  10     0        0        0     0         0         0

  attr(,"residual_distribution")
  Maximum likelihood estimates for the Laplace model 
          mu       sigma  
  -2.043e-23   1.503e-17  
  attr(,"params")
  attr(,"params")$model
  attr(,"params")$model$class
  [1] "multinom" "nnet"

  attr(,"params")$model$call
  [1] "nnet::multinom(formula = continent ~ model + wt + am + gear + \n    carb, data = test_cars, trace = FALSE)"

  attr(,"params")$model$print
  [1] "Call:\nnnet::multinom(formula = continent ~ model + wt + am + gear + \n    carb, data = test_cars, trace = FALSE)\n\nCoefficients:\n              (Intercept) modelCadillac Fleetwood modelCamaro Z28\nEurope          -21.86205               -2.222771       -6.526356\nNorth America   -12.29302               -2.006450       14.817906\n              modelChrysler Imperial modelDatsun 710 modelDodge Challenger\nEurope                    -3.5495185       -42.28844             -3.766810\nNorth America             -0.4119232       -22.35666              7.689393\n              modelDuster 360 modelFerrari Dino modelFiat 128 modelFiat X1-9\nEurope              -7.046867          5.545836     42.144872      43.426334\nNorth America       20.851301         -3.241914      2.522922       2.870462\n              modelFord Pantera L modelHonda Civic modelHornet 4 Drive\nEurope                  -23.11127      -27.5878163           -2.495884\nNorth America            29.30682       -0.1513286            7.771946\n              modelHornet Sportabout modelLincoln Continental modelLotus Europa\nEurope                     -5.036042                -1.780289         14.561696\nNorth America              12.103127                -2.891703         -1.631007\n              modelMaserati Bora modelMazda RX4 modelMazda RX4 Wag\nEurope                  6.999218      -33.61112          -35.88135\nNorth America          -7.857123       -3.27005          -10.72975\n              modelMerc 230 modelMerc 240D modelMerc 280 modelMerc 280C\nEurope           14.2684900     14.2452958     11.590028     10.4496565\nNorth America    -0.5204999     -0.6708756      1.228568      0.8928993\n              modelMerc 450SE modelMerc 450SL modelMerc 450SLC\nEurope               39.49499         34.5616         36.09627\nNorth America       -38.59611        -31.8537        -34.17067\n              modelPontiac Firebird modelPorsche 914-2 modelToyota Corolla\nEurope                    -3.057543          15.344405          -34.531039\nNorth America              4.399831          -4.102117           -8.804816\n              modelToyota Corona modelValiant modelVolvo 142E       wt\nEurope                 -44.72605    -2.073514       34.932615 4.534617\nNorth America          -52.77315     5.537827        2.626442 3.625818\n                 amTRUE     gear.L    gear.Q      carb\nEurope        -34.05607 40.7995829 -5.443825 10.524876\nNorth America -24.81811  0.6220113 39.516400  5.894396\n\nResidual Deviance: 0.0001161393 \nAIC: 136.0001 "

  attr(,"params")$model$summary
  [1] "Call:\nnnet::multinom(formula = continent ~ model + wt + am + gear + \n    carb, data = test_cars, trace = FALSE)\n\nCoefficients:\n              (Intercept) modelCadillac Fleetwood modelCamaro Z28\nEurope          -21.86205               -2.222771       -6.526356\nNorth America   -12.29302               -2.006450       14.817906\n              modelChrysler Imperial modelDatsun 710 modelDodge Challenger\nEurope                    -3.5495185       -42.28844             -3.766810\nNorth America             -0.4119232       -22.35666              7.689393\n              modelDuster 360 modelFerrari Dino modelFiat 128 modelFiat X1-9\nEurope              -7.046867          5.545836     42.144872      43.426334\nNorth America       20.851301         -3.241914      2.522922       2.870462\n              modelFord Pantera L modelHonda Civic modelHornet 4 Drive\nEurope                  -23.11127      -27.5878163           -2.495884\nNorth America            29.30682       -0.1513286            7.771946\n              modelHornet Sportabout modelLincoln Continental modelLotus Europa\nEurope                     -5.036042                -1.780289         14.561696\nNorth America              12.103127                -2.891703         -1.631007\n              modelMaserati Bora modelMazda RX4 modelMazda RX4 Wag\nEurope                  6.999218      -33.61112          -35.88135\nNorth America          -7.857123       -3.27005          -10.72975\n              modelMerc 230 modelMerc 240D modelMerc 280 modelMerc 280C\nEurope           14.2684900     14.2452958     11.590028     10.4496565\nNorth America    -0.5204999     -0.6708756      1.228568      0.8928993\n              modelMerc 450SE modelMerc 450SL modelMerc 450SLC\nEurope               39.49499         34.5616         36.09627\nNorth America       -38.59611        -31.8537        -34.17067\n              modelPontiac Firebird modelPorsche 914-2 modelToyota Corolla\nEurope                    -3.057543          15.344405          -34.531039\nNorth America              4.399831          -4.102117           -8.804816\n              modelToyota Corona modelValiant modelVolvo 142E       wt\nEurope                 -44.72605    -2.073514       34.932615 4.534617\nNorth America          -52.77315     5.537827        2.626442 3.625818\n                 amTRUE     gear.L    gear.Q      carb\nEurope        -34.05607 40.7995829 -5.443825 10.524876\nNorth America -24.81811  0.6220113 39.516400  5.894396\n\nStd. Errors:\n              (Intercept) modelCadillac Fleetwood modelCamaro Z28\nEurope           35852.83                64.65729             NaN\nNorth America    12968.78                64.70730    2.870067e-08\n              modelChrysler Imperial modelDatsun 710 modelDodge Challenger\nEurope                      477.3874    1.590757e-08          2.858243e-08\nNorth America               477.3874    2.200012e-18          6.428719e+00\n              modelDuster 360 modelFerrari Dino modelFiat 128 modelFiat X1-9\nEurope           5.486580e-10          2660.898  1.805399e+04   1.525317e+04\nNorth America    7.249665e-11          2660.898  1.192455e-12   4.867466e-13\n              modelFord Pantera L modelHonda Civic modelHornet 4 Drive\nEurope                 0.09603878     5.871595e-07        3.863891e-10\nNorth America          0.09624948     9.331882e-08        7.163294e+03\n              modelHornet Sportabout modelLincoln Continental modelLotus Europa\nEurope                  4.655689e-09                 285.0759          32194.07\nNorth America           5.351209e-02                 285.1436          20099.45\n              modelMaserati Bora modelMazda RX4 modelMazda RX4 Wag\nEurope                0.01739745   644.72277405       1.000913e+02\nNorth America         0.01739745     0.04282998       3.394594e-05\n              modelMerc 230 modelMerc 240D modelMerc 280 modelMerc 280C\nEurope         1.329222e+02   1.088958e+02  4.023889e-07   2.701645e-06\nNorth America  4.475756e-08   3.800080e-08  2.855911e-10   1.280090e-09\n              modelMerc 450SE modelMerc 450SL modelMerc 450SLC\nEurope            92448.24826        22918.50        1179.3388\nNorth America        12.05893        21677.09         776.0876\n              modelPontiac Firebird modelPorsche 914-2 modelToyota Corolla\nEurope                 1.504060e-06           29024.38        9.393802e-15\nNorth America          6.422677e+01           62881.87        2.008891e-13\n              modelToyota Corona modelValiant modelVolvo 142E       wt   amTRUE\nEurope              2.042457e-17 7.332842e-09    5.751337e+04 26852.73 81773.79\nNorth America       1.689525e+01 3.329289e+04    5.749185e-12 97682.05 57698.40\n                 gear.L    gear.Q     carb\nEurope        120502.95 45794.583 77388.60\nNorth America  84695.32  5294.488 34719.66\n\nResidual Deviance: 0.0001161393 \nAIC: 136.0001 "


  attr(,"params")$y_col
  [1] "continent"

  attr(,"params")$rand_it
  [1] 10

  attr(,"params")$parallel
  [1] 0

  attr(,"params")$model_packages
  [1] "nnet"

  attr(,"params")$random_model_call_string
  NULL

  attr(,"params")$random_model_call_string_vars
  character(0)

  attr(,"params")$positive
  [1] TRUE

  attr(,"params")$seed
  [1] 0

  attr(,"params")$rand_it_ok
  [1] 10

  attr(,"params")$exactness
  [1] "invalid"


Try the ale package in your browser

Any scripts or data that you put into this service are public.

ale documentation built on April 11, 2025, 6:09 p.m.