Nothing
## ----eval = FALSE-------------------------------------------------------------
# # Import the data set
# library(haven)
# library(data.table)
# cudata <- read_dta("dataaxj1.dta")
# setDT(cudata)
#
# # Subsetting relevant variables
# var.nms <- c("exp1to2", "custrict11", "ldist", "comlang", "border", "regional",
# "comcol", "curcol", "colony", "comctry", "cuwoemu", "emu", "cuc",
# "cty1", "cty2", "year", "pairid")
# cudata <- cudata[, ..var.nms]
#
# # Generate identifiers required for structural gravity
# cudata[, pairid := factor(pairid)]
# cudata[, exp.time := interaction(cty1, year)]
# cudata[, imp.time := interaction(cty2, year)]
#
# # Generate dummies for disaggregated currency unions
# cudata[, cuau := as.integer(cuc == "au")]
# cudata[, cube := as.integer(cuc == "be")]
# cudata[, cuca := as.integer(cuc == "ca")]
# cudata[, cucf := as.integer(cuc == "cf")]
# cudata[, cucp := as.integer(cuc == "cp")]
# cudata[, cudk := as.integer(cuc == "dk")]
# cudata[, cuea := as.integer(cuc == "ea")]
# cudata[, cuec := as.integer(cuc == "ec")]
# cudata[, cuem := as.integer(cuc == "em")]
# cudata[, cufr := as.integer(cuc == "fr")]
# cudata[, cugb := as.integer(cuc == "gb")]
# cudata[, cuin := as.integer(cuc == "in")]
# cudata[, cuma := as.integer(cuc == "ma")]
# cudata[, cuml := as.integer(cuc == "ml")]
# cudata[, cunc := as.integer(cuc == "nc")]
# cudata[, cunz := as.integer(cuc == "nz")]
# cudata[, cupk := as.integer(cuc == "pk")]
# cudata[, cupt := as.integer(cuc == "pt")]
# cudata[, cusa := as.integer(cuc == "sa")]
# cudata[, cusp := as.integer(cuc == "sp")]
# cudata[, cuua := as.integer(cuc == "ua")]
# cudata[, cuus := as.integer(cuc == "us")]
# cudata[, cuwa := as.integer(cuc == "wa")]
# cudata[, cuwoo := custrict11]
# cudata[cuc %in% c("em", "au", "cf", "ec", "fr", "gb", "in", "us"), cuwoo := 0L]
#
# # Set missing trade flows to zero
# cudata[is.na(exp1to2), exp1to2 := 0.0]
## ----eval = FALSE-------------------------------------------------------------
# mod <- feglm(exp1to2 ~ emu + cuwoo + cuau + cucf + cuec + cufr + cugb + cuin + cuus +
# regional + curcol | exp.time + imp.time + pairid | cty1 + cty2 + year, cudata,
# family = poisson())
# summary(mod, "sandwich")
## ----eval = FALSE-------------------------------------------------------------
# ## poisson - log link
# ##
# ## exp1to2 ~ emu + cuwoo + cuau + cucf + cuec + cufr + cugb + cuin +
# ## cuus + regional + curcol | exp.time + imp.time + pairid |
# ## cty1 + cty2 + year
# ##
# ## Estimates:
# ## Estimate Std. error z value Pr(> |z|)
# ## emu 0.0488950 0.0006057 80.722 < 2e-16 ***
# ## cuwoo 0.7659882 0.0047822 160.176 < 2e-16 ***
# ## cuau 0.3844686 0.0562134 6.839 7.95e-12 ***
# ## cucf -0.1256085 0.0231247 -5.432 5.58e-08 ***
# ## cuec -0.8773179 0.0234656 -37.387 < 2e-16 ***
# ## cufr 2.0957255 0.0048882 428.730 < 2e-16 ***
# ## cugb 1.0599574 0.0021330 496.925 < 2e-16 ***
# ## cuin 0.1697449 0.0068729 24.698 < 2e-16 ***
# ## cuus 0.0183233 0.0025739 7.119 1.09e-12 ***
# ## regional 0.1591810 0.0003433 463.662 < 2e-16 ***
# ## curcol 0.3868821 0.0022466 172.208 < 2e-16 ***
# ## ---
# ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# ##
# ## residual deviance= 35830779,
# ## null deviance= 2245707302,
# ## n= 1610165, l= [11227, 11277, 34104]
# ##
# ## ( 1363003 observation(s) deleted due to perfect classification )
# ##
# ## Number of Fisher Scoring Iterations: 13
## ----eval = FALSE-------------------------------------------------------------
# summary(mod, "clustered", cluster = ~ cty1 + cty2 + year)
## ----eval = FALSE-------------------------------------------------------------
# ## poisson - log link
# ##
# ## exp1to2 ~ emu + cuwoo + cuau + cucf + cuec + cufr + cugb + cuin +
# ## cuus + regional + curcol | exp.time + imp.time + pairid |
# ## cty1 + cty2 + year
# ##
# ## Estimates:
# ## Estimate Std. error z value Pr(> |z|)
# ## emu 0.04890 0.09455 0.517 0.60507
# ## cuwoo 0.76599 0.24933 3.072 0.00213 **
# ## cuau 0.38447 0.22355 1.720 0.08546 .
# ## cucf -0.12561 0.35221 -0.357 0.72137
# ## cuec -0.87732 0.29493 -2.975 0.00293 **
# ## cufr 2.09573 0.30625 6.843 7.75e-12 ***
# ## cugb 1.05996 0.23766 4.460 8.19e-06 ***
# ## cuin 0.16974 0.30090 0.564 0.57267
# ## cuus 0.01832 0.05092 0.360 0.71898
# ## regional 0.15918 0.07588 2.098 0.03593 *
# ## curcol 0.38688 0.15509 2.495 0.01261 *
# ## ---
# ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# ##
# ## residual deviance= 35830779,
# ## null deviance= 2245707302,
# ## n= 1610165, l= [11227, 11277, 34104]
# ##
# ## ( 1363003 observation(s) deleted due to perfect classification )
# ##
# ## Number of Fisher Scoring Iterations: 13
## ----eval = FALSE-------------------------------------------------------------
# library(car)
# cus <- c("cuwoo", "cuau", "cucf", "cuec", "cufr", "cugb", "cuin", "cuus")
# linearHypothesis(mod, cus, vcov. = vcov(mod, "clustered", cluster = ~ cty1 + cty2 + year))
## ----eval = FALSE-------------------------------------------------------------
# ## Linear hypothesis test
# ##
# ## Hypothesis:
# ## cuwoo = 0
# ## cuau = 0
# ## cucf = 0
# ## cuec = 0
# ## cufr = 0
# ## cugb = 0
# ## cuin = 0
# ## cuus = 0
# ##
# ## Model 1: restricted model
# ## Model 2: exp1to2 ~ emu + cuwoo + cuau + cucf + cuec + cufr + cugb + cuin +
# ## cuus + regional + curcol | exp.time + imp.time + pairid |
# ## cty1 + cty2 + year
# ##
# ## Note: Coefficient covariance matrix supplied.
# ##
# ## Df Chisq Pr(>Chisq)
# ## 1
# ## 2 8 96.771 < 2.2e-16 ***
# ## ---
# ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.