mca_pa: Parallel Analysis for MCA Dimensionality Assessment

View source: R/alsi.R

mca_paR Documentation

Parallel Analysis for MCA Dimensionality Assessment

Description

Compares observed MCA eigenvalues against reference distributions from permuted data to identify statistically meaningful dimensions.

Usage

mca_pa(
  data,
  vars,
  B = 2000,
  q = 0.95,
  seed = 20260123,
  max_dims = 20,
  verbose = TRUE
)

Arguments

data

Data frame or path to .xlsx file

vars

Character vector of binary variable names

B

Integer, number of permutations (default: 2000)

q

Numeric, reference quantile for retention (default: 0.95)

seed

Integer, random seed for reproducibility

max_dims

Integer, maximum dimensions to display in plot

verbose

Logical, print progress messages

Value

S3 object of class mca_pa containing:

eig_obs

Observed eigenvalues from the MCA of the original data

eig_q

Reference quantiles from permutation distribution

eig_perm

Matrix of permutation eigenvalues (B x dimensions)

K_star

Suggested number of dimensions to retain (where observed > reference)

fit

MCA fit object (class mca_fit) from original data

q

Quantile threshold used for comparison

B

Number of permutations performed

Examples


# Using included ANR2 dataset
data(ANR2)
pa <- mca_pa(ANR2, vars = names(ANR2), B = 100)
print(pa$K_star)


alsi documentation built on Feb. 17, 2026, 5:07 p.m.