ic.data.examp | R Documentation |
Function for calculating the influence function used for the real data example.
ic.data.examp(obs_data, what = "both", control = NULL)
obs_data |
the observed data. The first column should be the outcome. |
what |
the desired return value. Should be one of |
control |
any other control parameters to be passed to the estimator. |
If what
is
- "est"
, then return the estimated parameter.
- "ic"
, then return the estimated IC of the parameter estimate.
- "both"
, then return both the parameter estimate and
corresponding estimated IC.
expit <- function(x) exp(x) / (1 + exp(x)) ws <- matrix(rnorm(3000), ncol = 3) probs <- expit(ws %*% c(-1, 0, 2)) y <- rbinom(n = nrow(probs), size = 1, prob = probs[, 1]) wts <- abs(rnorm(length(y))) + 1 wts <- length(wts) * wts / sum(wts) cats <- rep(1:10, 100) obs_dat <- cbind(y, "cat" = cats, "wt" = wts, ws) est_ic <- ic.data.examp(obs_dat, what = "both") my_est <- est_ic$est my_ic <- est_ic$ic / nrow(ws) var_mat <- t(my_ic) %*% my_ic sqrt(diag(var_mat)) for(cov_idx in 1:ncol(ws)){ print(summary(stats::glm(y ~ ws[, cov_idx], weights = obs_dat[, "wt"], family = binomial))$coefficients[2, 1:2]) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.