mvrnormArma | R Documentation |
Simulates realizations from a multivariate normal with mean mu and covariance matrix sigma.
mvrnormArma(n, mu, sigma, chol)
n |
number of simulations. |
mu |
mean vector. |
sigma |
covariance matrix or Cholesky decomposition of the matrix (see chol). |
chol |
integer, if 0 sigma is a covariance matrix, otherwise it is the Cholesky decomposition of the matrix. |
A matrix of size d x n
containing the samples.
# Simulate 1000 realizations from a multivariate normal vector
mu <- rep(0,200)
Sigma <- diag(rep(1,200))
realizations<-mvrnormArma(n=1000,mu = mu,sigma=Sigma, chol=0)
empMean<-rowMeans(realizations)
empCov<-cov(t(realizations))
# check if the sample mean is close to the actual mean
maxErrorOnMean<-max(abs(mu-empMean))
# check if we can estimate correctly the covariance matrix
maxErrorOnVar<-max(abs(rep(1,200)-diag(empCov)))
maxErrorOnCov<-max(abs(empCov[lower.tri(empCov)]))
## Not run:
plot(density(realizations[2,]))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.