| ExClust-class | R Documentation |
S4 class for storing exemplar-based clusterings
Objects of this class can be created by calling cutree
to cut out a clustering level from a cluster hierarchy
of class AggExResult. Moreover,
cutree can also be used to convert an object of
class APResult to class ExClust.
The following slots are defined for ExClust objects:
l:number of samples in the data set
sel:subset of samples used for leveraged clustering
exemplars:vector containing indices of exemplars
clusters:list containing the clusters; the i-th component is a vector of indices of data points belonging to the i-th exemplar (including the exemplar itself)
idx:vector of length l realizing a
sample-to-exemplar mapping; the i-th entry
contains the index of the exemplar the i-th
sample belongs to
sim:similarity matrix; only available if
the preceding clustering method was called with
includeSim=TRUE.
call:method call of the preceding clustering method
signature(x="ExClust"): see
plot-methods
signature(x="ExClust", y="matrix"): see
plot-methods
signature(x="ExClust"): see
heatmap-methods
signature(x="ExClust", y="matrix"): see
heatmap-methods
signature(object="ExClust"): see
show-methods
signature(object="ExClust"): see
labels-methods
signature(object="ExClust", k="ANY", h="ANY"): see
cutree-methods
signature(x="ExClust"): gives the number of
clusters.
signature(x="ExClust"): see
sort-methods
signature(x="ExClust"): see
coerce-methods
signature(object="ExClust"): see
coerce-methods
In the following code snippets, x is an ExClust object.
signature(x="ExClust", i="index", j="missing"):
x[[i]] returns the i-th cluster as a list of indices
of samples belonging to the i-th cluster.
signature(x="ExClust", i="index", j="missing",
drop="missing"): x[i] returns a list of integer vectors with the
indices of samples belonging to this cluster. The list has as
many components as the argument i has elements. A list is
returned even if i is a single integer.
signature(x="ExClust"): gives the similarity
matrix.
Ulrich Bodenhofer, Andreas Kothmeier, and Johannes Palme
https://github.com/UBod/apcluster
Bodenhofer, U., Kothmeier, A., and Hochreiter, S. (2011) APCluster: an R package for affinity propagation clustering. Bioinformatics 27, 2463-2464. DOI: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/btr406")}.
aggExCluster, show-methods,
plot-methods, labels-methods,
cutree-methods, AggExResult,
APResult
## create two Gaussian clouds
cl1 <- cbind(rnorm(20, 0.2, 0.05), rnorm(20, 0.8, 0.06))
cl2 <- cbind(rnorm(25, 0.7, 0.08), rnorm(25, 0.3, 0.05))
x <- rbind(cl1, cl2)
## compute similarity matrix (negative squared Euclidean)
sim <- negDistMat(x, r=2)
## run affinity propagation
aggres <- aggExCluster(sim)
## extract level with two clusters
excl <- cutree(aggres, k=2)
## show details of clustering results
show(excl)
## plot information about clustering run
plot(excl, x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.