inst/doc/ards.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----eval=FALSE, echo=TRUE----------------------------------------------------
#  library(dplyr)
#  library(ards)
#  
#  # Initialize the ARDS
#  # - These values will be repeated on all rows in the ARDS dataset
#  init_ards(studyid = "MTCARS",
#            tableid = "01", adsns = "mtcars",
#            population = "all cars",
#            time = "1973")
#  
#  # Perform analysis on MPG
#  # - Using cylinders as a by group
#  analdf <- mtcars |>
#    select(cyl, mpg) |>
#    group_by(cyl) |>
#    summarize(n = n(),
#              mean = mean(mpg),
#              std = sd(mpg),
#              min = min(mpg),
#              max = max(mpg))
#  
#  # View analysis data
#  analdf
#  #     cyl     n  mean   std   min   max
#  #   <dbl> <int> <dbl> <dbl> <dbl> <dbl>
#  # 1     4    11  26.7  4.51  21.4  33.9
#  # 2     6     7  19.7  1.45  17.8  21.4
#  # 3     8    14  15.1  2.56  10.4  19.2
#  
#  # Add analysis data to ARDS
#  # - These values will be unique for each row in the ARDS dataset
#  add_ards(analdf,
#           statvars = c("n", "mean", "std", "min", "max"),
#           anal_var = "mpg", trtvar = "cyl")
#  
#  
#  # Get the ARDS
#  # - Remove by-variables to make the ARDS dataset easier to read
#  ards <- get_ards() |> select(-starts_with("by"))
#  
#  # Uncomment to view ards
#  # View(ards)
#  

## ----eval=FALSE, echo=TRUE----------------------------------------------------
#  library(dplyr)
#  library(tibble)
#  library(tidyr)
#  library(ards)
#  
#  # Create input data
#  adsl <- read.table(header = TRUE, text = '
#  STUDYID	DOMAIN	USUBJID	SUBJID	SITEID	BRTHDTC	AGE	AGEU	SEX	RACE	ETHNIC	ARMCD	ARM
#  ABC	DM	ABC-01-049	49	1	11/12/1966	39	YEARS	M	"WHITE"	"NOT HISPANIC OR LATINO"	4	"ARM D"
#  ABC	DM	ABC-01-050	50	1	12/19/1958	47	YEARS	M	"WHITE"	"NOT HISPANIC OR LATINO"	2	"ARM B"
#  ABC	DM	ABC-01-051	51	1	5/2/1972	34	YEARS	M	"WHITE"	"NOT HISPANIC OR LATINO"	1	"ARM A"
#  ABC	DM	ABC-01-052	52	1	6/27/1961	45	YEARS	F	"WHITE"	"UNKNOWN"	3	"ARM C"
#  ABC	DM	ABC-01-053	53	1	4/7/1980	26	YEARS	F	"WHITE"	"NOT HISPANIC OR LATINO"	2	"ARM B"
#  ABC	DM	ABC-01-054	54	1	9/13/1962	44	YEARS	M	"WHITE"	"NOT HISPANIC OR LATINO"	4	"ARM D"
#  ABC	DM	ABC-01-055	55	1	6/11/1959	47	YEARS	F	"BLACK OR AFRICAN AMERICAN"	"UNKNOWN"	3	"ARM C"
#  ABC	DM	ABC-01-056	56	1	5/2/1975	31	YEARS	M	"WHITE"	"NOT HISPANIC OR LATINO"	1	"ARM A"
#  ABC	DM	ABC-01-113	113	1	2/8/1932	74	YEARS	M	"WHITE"	"UNKNOWN"	4	"ARM D"')
#  
#  # Initalize ARDS
#  init_ards(studyid = "ABC",
#            tableid = "01", adsns = "adsl",
#            population = "safety population",
#            time = "SCREENING", where = "saffl = TRUE", reset = TRUE)
#  
#  # Perform analysis on AGE variable
#  agedf <- adsl |>
#    select(AGE, ARM) |>
#    group_by(ARM) |>
#    summarize(n = n(),
#              mean = mean(AGE),
#              std = sd(AGE),
#              median = median(AGE),
#              min = min(AGE),
#              max = max(AGE)) |>
#    mutate(analvar = "AGE") |>
#    ungroup() |>
#    add_ards(statvars = c("n", "mean", "std", "median", "min", "max"),
#             statdesc = c("N", "Mean", "Std", "Median", "Min", "Max"),
#             anal_var = "AGE", trtvar = "ARM") |>
#    transmute(analvar, ARM,
#              n = sprintf("%d", n),
#              mean_sd = sprintf("%.1f (%.2f)", mean, std),
#              median = sprintf("%.1f", median),
#              min_max = sprintf("%.1f-%.1f", min, max)) |>
#    pivot_longer(c(n, mean_sd, median, min_max),
#                 names_to = "label", values_to = "stats") |>
#    pivot_wider(names_from = ARM,
#                values_from = c(stats)) |>
#    transmute(analvar, label = c("N", "Mean (Std)", "Median", "Min-Max"),
#             trtA = `ARM A`, trtB = `ARM B`, trtC = `ARM C`, trtD = `ARM D`)
#  
#  # View analysis results
#  agedf
#  #   # A tibble: 4 × 6
#  #   analvar label      trtA        trtB         trtC        trtD
#  #   <chr>   <chr>      <chr>       <chr>        <chr>       <chr>
#  # 1 AGE     N          2           2            2           3
#  # 2 AGE     Mean (Std) 32.5 (2.12) 36.5 (14.85) 46.0 (1.41) 52.3 (18.93)
#  # 3 AGE     Median     32.5        36.5         46.0        44.0
#  # 4 AGE     Min-Max    31.0-34.0   26.0-47.0    45.0-47.0   39.0-74.0
#  
#  # Get population counts
#  trt_pop <- count(adsl, ARM) |> deframe()
#  
#  trt_pop
#  # ARM A ARM B ARM C ARM D
#  #   2     2     2     3
#  
#  # Perform analysis on SEX variable
#  sexdf <- adsl |>
#    mutate(denom = trt_pop[paste0(adsl$ARM)]) |>
#    group_by(SEX, ARM, denom) |>
#    summarize(cnt = n()) |>
#    transmute(SEX, ARM, cnt, analvar = "SEX", label = SEX,  pct =  cnt / denom * 100) |>
#    ungroup() |>
#    add_ards(statvars = c("cnt", "pct"), statdesc = "label",
#             anal_var = "SEX", trtvar = "ARM") |>
#    pivot_wider(names_from = ARM,
#                values_from = c(cnt, pct)) |>
#    transmute(analvar, label,
#              trtA = sprintf("%1d (%3.0f%%)", `cnt_ARM A`, `pct_ARM A`),
#              trtB = sprintf("%1d (%3.0f%%)", `cnt_ARM B`, `pct_ARM B`),
#              trtC = sprintf("%1d (%3.0f%%)", `cnt_ARM C`, `pct_ARM C`),
#              trtD = sprintf("%1d (%3.0f%%)", `cnt_ARM D`, `pct_ARM D`))
#  
#  # View analysis results
#  sexdf
#  #   analvar label trtA      trtB     trtC      trtD
#  #   <chr>   <chr> <chr>     <chr>    <chr>     <chr>
#  # 1 SEX     F     NA ( NA%) 1 ( 50%) 2 (100%)  NA ( NA%)
#  # 2 SEX     M     2 (100%)  1 ( 50%) NA ( NA%) 3 (100%)
#  
#  # Perform analysis on RACE
#  racedf <- adsl |>
#    mutate(denom = trt_pop[paste0(adsl$ARM)]) |>
#    group_by(RACE, ARM, denom) |>
#    summarize(cnt = n()) |>
#    transmute(RACE, ARM, cnt, analvar = "RACE", label = RACE,  pct =  cnt / denom * 100) |>
#    ungroup() |>
#    add_ards(statvars = c("cnt", "pct"), statdesc = "label",
#             anal_var = "RACE", trtvar = "ARM") |>
#    pivot_wider(names_from = ARM,
#                values_from = c(cnt, pct)) |>
#    transmute(analvar, label,
#              trtA = sprintf("%1d (%3.0f%%)", `cnt_ARM A`, `pct_ARM A`),
#              trtB = sprintf("%1d (%3.0f%%)", `cnt_ARM B`, `pct_ARM B`),
#              trtC = sprintf("%1d (%3.0f%%)", `cnt_ARM C`, `pct_ARM C`),
#              trtD = sprintf("%1d (%3.0f%%)", `cnt_ARM D`, `pct_ARM D`))
#  
#  # View analysis results
#  racedf
#  #   analvar label                     trtA      trtB      trtC     trtD
#  #   <chr>   <chr>                     <chr>     <chr>     <chr>    <chr>
#  # 1 RACE    BLACK OR AFRICAN AMERICAN NA ( NA%) NA ( NA%) 1 ( 50%) NA ( NA%)
#  # 2 RACE    WHITE                     2 (100%)  2 (100%)  1 ( 50%) 3 (100%)
#  
#  # Combine all analysis into final data frame
#  final <- bind_rows(agedf, sexdf, racedf)
#  
#  # View final data frame
#  # - This data frame would normally used for reporting
#  final
#  # # A tibble: 8 × 6
#  #   analvar label                     trtA        trtB         trtC        trtD
#  #   <chr>   <chr>                     <chr>       <chr>        <chr>       <chr>
#  # 1 AGE     N                         2           2            2           3
#  # 2 AGE     Mean (Std)                32.5 (2.12) 36.5 (14.85) 46.0 (1.41) 52.3 (18.93)
#  # 3 AGE     Median                    32.5        36.5         46.0        44.0
#  # 4 AGE     Min-Max                   31.0-34.0   26.0-47.0    45.0-47.0   39.0-74.0
#  # 5 SEX     F                         NA ( NA%)   1 ( 50%)     2 (100%)    NA ( NA%)
#  # 6 SEX     M                         2 (100%)    1 ( 50%)     NA ( NA%)   3 (100%)
#  # 7 RACE    BLACK OR AFRICAN AMERICAN NA ( NA%)   NA ( NA%)    1 ( 50%)    NA ( NA%)
#  # 8 RACE    WHITE                     2 (100%)    2 (100%)     1 ( 50%)    3 (100%)
#  
#  
#  # Extract ARDS
#  # - Remove by-variables to improve readability
#  ards <- get_ards() |> select(-starts_with("by"))
#  
#  # Uncomment to view ARDS
#  # View(ards)
#  

Try the ards package in your browser

Any scripts or data that you put into this service are public.

ards documentation built on March 31, 2023, 10:18 p.m.