Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# library(dplyr)
# library(ards)
#
# # Initialize the ARDS
# # - These values will be repeated on all rows in the ARDS dataset
# init_ards(studyid = "MTCARS",
# tableid = "01", adsns = "mtcars",
# population = "all cars",
# time = "1973")
#
# # Perform analysis on MPG
# # - Using cylinders as a by group
# analdf <- mtcars |>
# select(cyl, mpg) |>
# group_by(cyl) |>
# summarize(n = n(),
# mean = mean(mpg),
# std = sd(mpg),
# min = min(mpg),
# max = max(mpg))
#
# # View analysis data
# analdf
# # cyl n mean std min max
# # <dbl> <int> <dbl> <dbl> <dbl> <dbl>
# # 1 4 11 26.7 4.51 21.4 33.9
# # 2 6 7 19.7 1.45 17.8 21.4
# # 3 8 14 15.1 2.56 10.4 19.2
#
# # Add analysis data to ARDS
# # - These values will be unique for each row in the ARDS dataset
# add_ards(analdf,
# statvars = c("n", "mean", "std", "min", "max"),
# anal_var = "mpg", trtvar = "cyl")
#
#
# # Get the ARDS
# # - Remove by-variables to make the ARDS dataset easier to read
# ards <- get_ards() |> select(-starts_with("by"))
#
# # Uncomment to view ards
# # View(ards)
#
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# library(dplyr)
# library(tibble)
# library(tidyr)
# library(ards)
#
# # Create input data
# adsl <- read.table(header = TRUE, text = '
# STUDYID DOMAIN USUBJID SUBJID SITEID BRTHDTC AGE AGEU SEX RACE ETHNIC ARMCD ARM
# ABC DM ABC-01-049 49 1 11/12/1966 39 YEARS M "WHITE" "NOT HISPANIC OR LATINO" 4 "ARM D"
# ABC DM ABC-01-050 50 1 12/19/1958 47 YEARS M "WHITE" "NOT HISPANIC OR LATINO" 2 "ARM B"
# ABC DM ABC-01-051 51 1 5/2/1972 34 YEARS M "WHITE" "NOT HISPANIC OR LATINO" 1 "ARM A"
# ABC DM ABC-01-052 52 1 6/27/1961 45 YEARS F "WHITE" "UNKNOWN" 3 "ARM C"
# ABC DM ABC-01-053 53 1 4/7/1980 26 YEARS F "WHITE" "NOT HISPANIC OR LATINO" 2 "ARM B"
# ABC DM ABC-01-054 54 1 9/13/1962 44 YEARS M "WHITE" "NOT HISPANIC OR LATINO" 4 "ARM D"
# ABC DM ABC-01-055 55 1 6/11/1959 47 YEARS F "BLACK OR AFRICAN AMERICAN" "UNKNOWN" 3 "ARM C"
# ABC DM ABC-01-056 56 1 5/2/1975 31 YEARS M "WHITE" "NOT HISPANIC OR LATINO" 1 "ARM A"
# ABC DM ABC-01-113 113 1 2/8/1932 74 YEARS M "WHITE" "UNKNOWN" 4 "ARM D"')
#
# # Initalize ARDS
# init_ards(studyid = "ABC",
# tableid = "01", adsns = "adsl",
# population = "safety population",
# time = "SCREENING", where = "saffl = TRUE", reset = TRUE)
#
# # Perform analysis on AGE variable
# agedf <- adsl |>
# select(AGE, ARM) |>
# group_by(ARM) |>
# summarize(n = n(),
# mean = mean(AGE),
# std = sd(AGE),
# median = median(AGE),
# min = min(AGE),
# max = max(AGE)) |>
# mutate(analvar = "AGE") |>
# ungroup() |>
# add_ards(statvars = c("n", "mean", "std", "median", "min", "max"),
# statdesc = c("N", "Mean", "Std", "Median", "Min", "Max"),
# anal_var = "AGE", trtvar = "ARM") |>
# transmute(analvar, ARM,
# n = sprintf("%d", n),
# mean_sd = sprintf("%.1f (%.2f)", mean, std),
# median = sprintf("%.1f", median),
# min_max = sprintf("%.1f-%.1f", min, max)) |>
# pivot_longer(c(n, mean_sd, median, min_max),
# names_to = "label", values_to = "stats") |>
# pivot_wider(names_from = ARM,
# values_from = c(stats)) |>
# transmute(analvar, label = c("N", "Mean (Std)", "Median", "Min-Max"),
# trtA = `ARM A`, trtB = `ARM B`, trtC = `ARM C`, trtD = `ARM D`)
#
# # View analysis results
# agedf
# # # A tibble: 4 × 6
# # analvar label trtA trtB trtC trtD
# # <chr> <chr> <chr> <chr> <chr> <chr>
# # 1 AGE N 2 2 2 3
# # 2 AGE Mean (Std) 32.5 (2.12) 36.5 (14.85) 46.0 (1.41) 52.3 (18.93)
# # 3 AGE Median 32.5 36.5 46.0 44.0
# # 4 AGE Min-Max 31.0-34.0 26.0-47.0 45.0-47.0 39.0-74.0
#
# # Get population counts
# trt_pop <- count(adsl, ARM) |> deframe()
#
# trt_pop
# # ARM A ARM B ARM C ARM D
# # 2 2 2 3
#
# # Perform analysis on SEX variable
# sexdf <- adsl |>
# mutate(denom = trt_pop[paste0(adsl$ARM)]) |>
# group_by(SEX, ARM, denom) |>
# summarize(cnt = n()) |>
# transmute(SEX, ARM, cnt, analvar = "SEX", label = SEX, pct = cnt / denom * 100) |>
# ungroup() |>
# add_ards(statvars = c("cnt", "pct"), statdesc = "label",
# anal_var = "SEX", trtvar = "ARM") |>
# pivot_wider(names_from = ARM,
# values_from = c(cnt, pct)) |>
# transmute(analvar, label,
# trtA = sprintf("%1d (%3.0f%%)", `cnt_ARM A`, `pct_ARM A`),
# trtB = sprintf("%1d (%3.0f%%)", `cnt_ARM B`, `pct_ARM B`),
# trtC = sprintf("%1d (%3.0f%%)", `cnt_ARM C`, `pct_ARM C`),
# trtD = sprintf("%1d (%3.0f%%)", `cnt_ARM D`, `pct_ARM D`))
#
# # View analysis results
# sexdf
# # analvar label trtA trtB trtC trtD
# # <chr> <chr> <chr> <chr> <chr> <chr>
# # 1 SEX F NA ( NA%) 1 ( 50%) 2 (100%) NA ( NA%)
# # 2 SEX M 2 (100%) 1 ( 50%) NA ( NA%) 3 (100%)
#
# # Perform analysis on RACE
# racedf <- adsl |>
# mutate(denom = trt_pop[paste0(adsl$ARM)]) |>
# group_by(RACE, ARM, denom) |>
# summarize(cnt = n()) |>
# transmute(RACE, ARM, cnt, analvar = "RACE", label = RACE, pct = cnt / denom * 100) |>
# ungroup() |>
# add_ards(statvars = c("cnt", "pct"), statdesc = "label",
# anal_var = "RACE", trtvar = "ARM") |>
# pivot_wider(names_from = ARM,
# values_from = c(cnt, pct)) |>
# transmute(analvar, label,
# trtA = sprintf("%1d (%3.0f%%)", `cnt_ARM A`, `pct_ARM A`),
# trtB = sprintf("%1d (%3.0f%%)", `cnt_ARM B`, `pct_ARM B`),
# trtC = sprintf("%1d (%3.0f%%)", `cnt_ARM C`, `pct_ARM C`),
# trtD = sprintf("%1d (%3.0f%%)", `cnt_ARM D`, `pct_ARM D`))
#
# # View analysis results
# racedf
# # analvar label trtA trtB trtC trtD
# # <chr> <chr> <chr> <chr> <chr> <chr>
# # 1 RACE BLACK OR AFRICAN AMERICAN NA ( NA%) NA ( NA%) 1 ( 50%) NA ( NA%)
# # 2 RACE WHITE 2 (100%) 2 (100%) 1 ( 50%) 3 (100%)
#
# # Combine all analysis into final data frame
# final <- bind_rows(agedf, sexdf, racedf)
#
# # View final data frame
# # - This data frame would normally used for reporting
# final
# # # A tibble: 8 × 6
# # analvar label trtA trtB trtC trtD
# # <chr> <chr> <chr> <chr> <chr> <chr>
# # 1 AGE N 2 2 2 3
# # 2 AGE Mean (Std) 32.5 (2.12) 36.5 (14.85) 46.0 (1.41) 52.3 (18.93)
# # 3 AGE Median 32.5 36.5 46.0 44.0
# # 4 AGE Min-Max 31.0-34.0 26.0-47.0 45.0-47.0 39.0-74.0
# # 5 SEX F NA ( NA%) 1 ( 50%) 2 (100%) NA ( NA%)
# # 6 SEX M 2 (100%) 1 ( 50%) NA ( NA%) 3 (100%)
# # 7 RACE BLACK OR AFRICAN AMERICAN NA ( NA%) NA ( NA%) 1 ( 50%) NA ( NA%)
# # 8 RACE WHITE 2 (100%) 2 (100%) 1 ( 50%) 3 (100%)
#
#
# # Extract ARDS
# # - Remove by-variables to improve readability
# ards <- get_ards() |> select(-starts_with("by"))
#
# # Uncomment to view ARDS
# # View(ards)
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.