Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(arlclustering)
#library(igraph)
## -----------------------------------------------------------------------------
# Start the timer
t1 <- system.time({
dataset_path <- system.file("extdata", "dolphins.gml", package = "arlclustering")
if (dataset_path == "") {
stop("dolphins.gml file not found")
}
g <- arlc_get_network_dataset(dataset_path, "Dolphins")
g$graphLabel
g$totalEdges
g$totalNodes
g$averageDegree
})
# Display the total processing time
message("Graph loading Processing Time: ", t1["elapsed"], " seconds\n")
## -----------------------------------------------------------------------------
# Start the timer
t2 <- system.time({
transactions <- arlc_gen_transactions(g$graph)
transactions
})
# Display the total processing time
message("Transaction dataset Processing Time: ", t2["elapsed"], " seconds\n")
## -----------------------------------------------------------------------------
# Start the timer
t3 <- system.time({
params <- arlc_get_apriori_thresholds(transactions,
supportRange = seq(0.05, 0.07, by = 0.01),
Conf = 0.5)
params$minSupp
params$minConf
params$bestLift
params$lenRules
params$ratio
})
# Display the total processing time
message("Graph loading Processing Time: ", t3["elapsed"], " seconds\n")
## -----------------------------------------------------------------------------
# Start the timer
t4 <- system.time({
minLenRules <- 1
maxLenRules <- params$lenRules
if (!is.finite(maxLenRules) || maxLenRules > 5*length(transactions)) {
maxLenRules <- 5*length(transactions)
}
grossRules <- arlc_gen_gross_rules(transactions,
minSupp = params$minSupp,
minConf = params$minConf,
minLenRules = minLenRules+1,
maxLenRules = maxLenRules)
#grossRules$TotalRulesWithLengthFilter
})
# Display the total number of clusters and the total processing time
message("Gross rules generation Time: ", t4["elapsed"], " seconds\n")
## -----------------------------------------------------------------------------
t5 <- system.time({
NonRedRules <- arlc_get_NonR_rules(grossRules$GrossRules)
NonRSigRules <- arlc_get_significant_rules(transactions,
NonRedRules$FiltredRules)
#NonRSigRules$TotFiltredRules
})
# Display the total number of clusters and the total processing time
message("\nClearing rules Processing Time: ", t5["elapsed"], " seconds\n")
## -----------------------------------------------------------------------------
t6 <- system.time({
cleanedRules <- arlc_clean_final_rules(NonRSigRules$FiltredRules)
clusters <- arlc_generate_clusters(cleanedRules)
#clusters$TotClusters
})
# Display the total number of clusters and the total processing time
message("Cleaning final rules Processing Time: ", t6["elapsed"], " seconds\n")
message("The total comsumed time is:",t1["elapsed"]+ t2["elapsed"]+t3["elapsed"]+t4["elapsed"]+t5["elapsed"]+t6["elapsed"], "seconds\n")
## -----------------------------------------------------------------------------
arlc_clusters_plot(g$graph,
g$graphLabel,
clusters$Clusters)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.