CBA | R Documentation |
Build a classifier based on association rules using the ranking, pruning and classification strategy of the CBA algorithm by Liu, et al. (1998).
CBA(
formula,
data,
pruning = "M1",
parameter = NULL,
control = NULL,
balanceSupport = FALSE,
disc.method = "mdlp",
verbose = FALSE,
...
)
pruneCBA_M1(formula, rules, transactions, verbose = FALSE)
pruneCBA_M2(formula, rules, transactions, verbose = FALSE)
formula |
A symbolic description of the model to be fitted. Has to be
of form |
data |
arules::transactions containing the training data or a data.frame which.
is automatically discretized and converted to transactions with |
pruning |
Pruning strategy used: "M1" or "M2". |
parameter , control |
Optional parameter and control lists for apriori. |
balanceSupport |
balanceSupport parameter passed to |
disc.method |
Discretization method used to discretize continuous
variables if data is a data.frame (default: |
verbose |
Show progress? |
... |
For convenience, additional parameters are used to create the
|
rules , transactions |
prune a set of rules using a transaction set. |
Implementation the CBA algorithm with the M1 or M2 pruning strategy introduced by Liu, et al. (1998).
Candidate classification association rules (CARs) are mined with the APRIORI algorithm but minimum support is only checked for the LHS (rule coverage) and not the whole rule. Rules are ranked by confidence, support and size. Then either the M1 or M2 algorithm are used to perform database coverage pruning and default rule pruning.
Returns an object of class CBA representing the trained classifier.
Ian Johnson and Michael Hahsler
Liu, B. Hsu, W. and Ma, Y (1998). Integrating Classification and Association Rule Mining. KDD'98 Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, 27-31 August. AAAI. pp. 80-86. https://dl.acm.org/doi/10.5555/3000292.3000305
Other classifiers:
CBA_helpers
,
CBA_ruleset()
,
FOIL()
,
LUCS_KDD_CBA
,
RCAR()
,
RWeka_CBA
data("iris")
# 1. Learn a classifier using automatic default discretization
classifier <- CBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9)
classifier
# inspect the rule base
inspect(classifier$rules)
# make predictions
predict(classifier, head(iris))
table(pred = predict(classifier, iris), true = iris$Species)
# 2. Learn classifier from transactions (and use verbose)
iris_trans <- prepareTransactions(Species ~ ., iris, disc.method = "mdlp")
iris_trans
classifier <- CBA(Species ~ ., data = iris_trans, supp = 0.05, conf = 0.9, verbose = TRUE)
classifier
# make predictions. Note: response extracts class information from transactions.
predict(classifier, head(iris_trans))
table(pred = predict(classifier, iris_trans), true = response(Species ~ ., iris_trans))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.