README.md

R package arulesViz - Visualizing Association Rules and Frequent Itemsets

CRAN
version stream r-universe
status CRAN RStudio mirror
downloads

Introduction

This R package extends package arules with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration.

The following R packages use arulesViz: arules, fdm2id, rattle, TELP

To cite package ‘arulesViz’ in publications use:

Hahsler M (2017). “arulesViz: Interactive Visualization of Association Rules with R.” R Journal, 9(2), 163-175. ISSN 2073-4859, https://doi.org/10.32614/RJ-2017-047, https://journal.r-project.org/archive/2017/RJ-2017-047/RJ-2017-047.pdf.

@Article{,
  title = {arules{V}iz: {I}nteractive Visualization of Association Rules with {R}},
  author = {Michael Hahsler},
  year = {2017},
  journal = {R Journal},
  volume = {9},
  number = {2},
  pages = {163--175},
  url = {https://journal.r-project.org/archive/2017/RJ-2017-047/RJ-2017-047.pdf},
  doi = {10.32614/RJ-2017-047},
  month = {December},
  issn = {2073-4859},
}

This might also require the development version of arules.

Features

Available Visualizations

Installation

Stable CRAN version: Install from within R with

install.packages("arulesViz")

Current development version: Install from r-universe.

install.packages("arulesViz",
    repos = c("https://mhahsler.r-universe.dev". "https://cloud.r-project.org/"))

Usage

Mine some rules.

library("arulesViz")
data("Groceries")
rules <- apriori(Groceries, parameter = list(support = 0.005, confidence = 0.5))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.5    0.1    1 none FALSE            TRUE       5   0.005      1
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 49 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [120 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [120 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].

Standard visualizations

plot(rules)

plot(rules, method = "graph", limit = 20)

Interactive visualization

Live examples for interactive visualizations can be seen in Chapter 5 of An R Companion for Introduction to Data Mining

References



Try the arulesViz package in your browser

Any scripts or data that you put into this service are public.

arulesViz documentation built on May 29, 2024, 4:37 a.m.