knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=6, fig.height=6 )
library(ashapesampler) library(alphahull) library(ggplot2) library(doParallel) library(parallel) cores <- min(2L, detectCores())
In this document, we demonstrate the $\alpha$-shape sampler pipeline by simulating
the process of learning a set of two-dimensional shapes (in this case, annuli) and
simulating a new shape from that. This vignette requires the packages alphahull
,
ggplot2
, parallel
, and doParallel
in addition to ashapesampler
.
We begin by setting the parameters for our simulation. We will fix $\alpha=0.25$ and $n=100$, and draw 20 shapes for our data set. Our true underlying manifold will be the annulus with outer radius 0.75 and inner radius 0.25.
set.seed(201723) my_alpha = 0.15 n = 1000 N= 10 r_maj <- 0.75 r_min <- 0.25
Next we will draw the shapes themselves.
ann_list <- list() complex_list <- list() tau_vec <- vector("numeric", N) for (k in 1:N){ ann_pts <- runif_annulus(n, r_maj, r_min) ann_list[[k]] <- ashape(ann_pts, alpha = my_alpha) complex_list[[k]] <- get_alpha_complex(ann_pts, my_alpha) tau_vec[k] <- tau_bound(ann_list[[k]]$x, complex_list[[k]]) }
Now that we have the shapes generated and imported, we want to sample point clouds to combine. We'll choose 2.
choose_2 <- sample(N,2) point_cloud = rbind(ann_list[[choose_2[1]]]$x, ann_list[[choose_2[[2]]]]$x)
Then we will have our $\tau$ bound be a summary statistic of the $\tau$ found for each input shape. Here, we will use mean, but one can tweak this to see different results. Note that if $\tau$ is too small, then the random walk won't be able to execute around the point cloud, but if $\tau$ is too big, then we risk losing geometric and topological information in the reconstruction.
tau_vec2 = c(tau_vec[choose_2[1]], tau_vec[choose_2[2]])
Now we can take the parameters and generate a new shape and plot it. Here, we assume k_min=2
as we are in two dimensions.
new_annulus <- generate_ashape2d(point_cloud, J=2, tau=min(tau_vec2), cores=cores) tri_keep = new_annulus$delvor.obj$tri.obj$trlist[which(new_annulus$delvor.obj$tri.obj$cclist[,3]<new_annulus$alpha), 1:3] dim_tri = dim(tri_keep)[1] tri_keep = as.vector(t(tri_keep)) triangles = data.frame("id"=sort(rep(1:dim_tri, 3)), "x"=new_annulus$x[tri_keep, 1], "y"=new_annulus$x[tri_keep,2]) extremes = as.data.frame(new_annulus$x[new_annulus$alpha.extremes,]) edges = as.data.frame(new_annulus$edges[,3:6]) ggplot(data.frame(new_annulus$x), aes(x=X1, y=X2)) + geom_polygon(data=triangles, aes(x=x, y=y, group=id), fill="gray") + geom_segment(data=edges, aes(x=x1, y=y1, xend=x2, yend=y2), color="blue")+ geom_point(data=extremes, aes(x=V1, y=V2), size=1.5)+ theme_classic()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.