| lik_binom | R Documentation | 
Creates a likelihood object for ash for use with Binomial error distribution
lik_binom(y, n, link = c("identity", "logit"))
y | 
 Binomial observations  | 
n | 
 Binomial number of trials  | 
link | 
 Link function. The "identity" link directly puts unimodal prior on Binomial success probabilities p, and "logit" link puts unimodal prior on logit(p).  | 
Suppose we have Binomial observations y where y_i\sim Bin(n_i,p_i). 
We either put an unimodal prior g on the success probabilities p_i\sim g (by specifying 
link="identity") or on the logit success probabilities logit(p_i)\sim g 
(by specifying link="logit"). Either way, ASH with this Binomial likelihood function 
will compute the posterior mean of the success probabilities p_i.
   p = rbeta(100,2,2) # prior mode: 0.5
   n = rpois(100,10)
   y = rbinom(100,n,p) # simulate Binomial observations
   ash(rep(0,length(y)),1,lik=lik_binom(y,n))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.