asm | R Documentation |
Performs linear regression with a data-driven convex loss function
asm(formula, data = NULL, ...)
formula |
regression formula |
data |
input data frame |
... |
additional arguments for asm.fit |
asm
class object containing the following components:
betahat
:vector of estimated coefficients
std_errs
:vector of standard errors of the estimated coefficients
fitted.values
:fitted values
residuals
:residuals
zvals
:z-values
sig_vals
:p-values
info_asm
:antitonic information
I_mat
:estimated antitonic information matrix
Cov_mat
:covariance matrix of the estimated coefficients
psi
:estimated antitonic score function
asm(mpg ~ cyl + hp + disp, data=mtcars)
asm(mpg ~ cyl + hp + disp, data=mtcars, symmetric=FALSE)
n <- 1000 ; d <- 2
X <- matrix(rnorm(n * d), n, d)
Y <- X %*% c(2, 3) + 1 + rnorm(n)
asm(Y ~ X - 1)
Y <- X %*% c(2, 3) + rchisq(n, 6) - qchisq(0.4, 6)
asm(Y ~ X, symmetric=FALSE, intercept.selection="quantile", error_quantile=0.4)
Y <- X %*% c(2, 3) + rcauchy(n)
asm(Y ~ X, symmetric=FALSE, intercept.selection="median")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.