Nothing
#' asmbPLS-DA for block-structured data
#'
#' Function to fit the adaptive sparse multi-block partial least square
#' discriminant analysis (asmbPLS-DA) model with several explanatory blocks
#' \eqn{(X_1, ..., X_B)} as our predictors to explain the categorical outcome Y.
#'
#' @param X.matrix Predictors matrix. Samples in rows, variables in columns
#' @param Y.matrix Outcome matrix. Samples in rows, this is a matrix with one
#' column (binary) or multiple columns (more than 2 levels, dummy variables).
#' @param PLS.comp Number of PLS components in asmbPLS-DA.
#' @param X.dim A vector containing the number of predictors in each block
#' (ordered).
#' @param quantile.comb A matrix containing quantile combinations used for
#' different PLS components, whose row number equals to the number of PLS
#' components used, column number equals to the number of blocks.
#' @param outcome.type The type of the outcome Y. "\code{binary}" for binary
#' outcome, and "\code{multiclass}" for categorical outcome with more than 2
#' levels.
#' @param center A logical value indicating whether weighted mean center should
#' be implemented for X.matrix and Y.matrix. The default is TRUE.
#' @param scale A logical value indicating whether scale should be
#' implemented for X.matrix. The default is TRUE.
#' @param maxiter A integer indicating the maximum number of iteration. The
#' default number is 100.
#'
#' @return
#' \code{asmbPLSDA.fit} returns a list containing the following components:
#' \item{X_dim}{A vector containing the number of predictors in each block.}
#' \item{X_weight}{A list containing the weights of predictors for different
#' blocks in different PLS components.}
#' \item{X_score}{A list containing the scores of samples in different blocks
#' in different PLS components.}
#' \item{X_loading}{A list containing the loadings of predictors for different
#' blocks in different PLS components.}
#' \item{X_super_weight}{A matrix containing the super weights of different
#' blocks for different PLS components.}
#' \item{X_super_score}{A matrix containing the super scores of samples for
#' different PLS components.}
#' \item{Y_weight}{A matrix containing the weights of outcome for different
#' PLS components.}
#' \item{Y_score}{A matrix containing the scores of outcome for different
#' PLS components.}
#' \item{X_col_mean}{A matrix containing the weighted mean of each predictor
#' for scaling.}
#' \item{Y_col_mean}{The weighted mean of outcome matrix for scaling.}
#' \item{X_col_sd}{A matrix containing the standard deviation (sd) of each
#' predictor for scaling. sd for predictors with sd = 0 will be changed to 1.}
#' \item{center}{A logical value indicating whether weighted mean center is
#' implemented for X.matrix and Y.matrix.}
#' \item{scale}{A logical value indicating whether scale is implemented for
#' X.matrix.}
#' \item{Outcome_type}{The type of the outcome Y. "\code{binary}" for binary
#' outcome, and "\code{multiclass}" for categorical outcome with more than 2
#' levels.}
#' \item{Y_group}{Original Y.matrix.}
#' @examples
#' ## Use the example dataset
#' data(asmbPLSDA.example)
#' X.matrix = asmbPLSDA.example$X.matrix
#' Y.matrix.binary = asmbPLSDA.example$Y.matrix.binary
#' Y.matrix.multiclass = asmbPLSDA.example$Y.matrix.morethan2levels
#' X.dim = asmbPLSDA.example$X.dim
#' PLS.comp = asmbPLSDA.example$PLS.comp
#' quantile.comb = asmbPLSDA.example$quantile.comb
#'
#' ## asmbPLSDA fit for binary outcome
#' asmbPLSDA.fit.binary <- asmbPLSDA.fit(X.matrix = X.matrix,
#' Y.matrix = Y.matrix.binary,
#' PLS.comp = PLS.comp,
#' X.dim = X.dim,
#' quantile.comb = quantile.comb,
#' outcome.type = "binary")
#'
#' ## asmbPLSDA fit for categorical outcome with more than 2 levels
#' asmbPLSDA.fit.multiclass <- asmbPLSDA.fit(X.matrix = X.matrix,
#' Y.matrix = Y.matrix.multiclass,
#' PLS.comp = PLS.comp,
#' X.dim = X.dim,
#' quantile.comb = quantile.comb,
#' outcome.type = "multiclass")
#'
#' @export
#' @useDynLib asmbPLS, .registration=TRUE
#' @importFrom Rcpp sourceCpp
#' @importFrom stats quantile
asmbPLSDA.fit <- function(X.matrix, Y.matrix, PLS.comp, X.dim, quantile.comb, outcome.type, center = TRUE, scale = TRUE, maxiter = 100){
stopifnot(!missing(X.matrix),
!missing(Y.matrix),
!missing(PLS.comp),
!missing(X.dim),
!missing(quantile.comb),
!missing(outcome.type),
is.matrix(X.matrix),
is.matrix(Y.matrix),
is.matrix(quantile.comb))
blocks_vector <- rep(1:length(X.dim), times = X.dim)
blocks <- lapply(1:length(X.dim), function(x) which(blocks_vector == x))
fit.results <- asmbPLSDA_fit(X.matrix, Y.matrix, PLS.comp, X.dim, quantile.comb, outcome.type, center, scale, maxiter)
for(i in 1:length(X.dim)) {
row.names(fit.results$X_weight[[i]]) <- colnames(X.matrix)[blocks[[i]]]
}
return(fit.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.