xKsmooth2 | R Documentation |
Ksmooth
Returns the filtered and smoothed values for the state-space model. This is the smoother companion to Kfilter2. NOTE: This script has been superseded by Ksmooth
. Note that
scripts starting with an x are scheduled to be phased out.
xKsmooth2(num, y, A, mu0, Sigma0, Phi, Ups, Gam, Theta, cQ, cR,
S, input)
num |
number of observations |
y |
data matrix, vector or time series |
A |
time-varying observation matrix, an array with |
mu0 |
initial state mean |
Sigma0 |
initial state covariance matrix |
Phi |
state transition matrix |
Ups |
state input matrix; use |
Gam |
observation input matrix; use |
Theta |
state error pre-matrix |
cQ |
Cholesky-type decomposition of state error covariance matrix Q – see details below |
cR |
Cholesky-type decomposition of observation error covariance matrix R – see details below |
S |
covariance matrix of state and observation errors |
input |
matrix or vector of inputs having the same row dimension as y; use |
NOTE: This script has been superseded by Ksmooth
xs |
state smoothers |
Ps |
smoother mean square error |
J |
the J matrices |
xp |
one-step-ahead prediction of the state |
Pp |
mean square prediction error |
xf |
filter value of the state |
Pf |
mean square filter error |
like |
the negative of the log likelihood |
Kn |
last value of the gain |
D.S. Stoffer
You can find demonstrations of astsa capabilities at FUN WITH ASTSA.
The most recent version of the package can be found at https://github.com/nickpoison/astsa/.
In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.
The webpages for the texts and some help on using R for time series analysis can be found at https://nickpoison.github.io/.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.