knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
options(width=120)

In this vignette, we compare the computation time/memory usage of dense matrix and sparse Matrix.

Allocation and length

We begin with an analysis of the time/memory it takes to create these objects. In the atime code below, we allocate a vector for comparison, and we specify a result function which computes the length of the object x created by each expression. This means atime will save length as a function of data size N (in addition to time and memory).

library(Matrix)
N_seq <- unique(as.integer(10^seq(0,7,by=0.25)))
vec.mat.result <- atime::atime(
  N=N_seq,
  vector=numeric(N),
  matrix=matrix(0, N, N),
  Matrix=Matrix(0, N, N),
  result=function(x)data.frame(length=length(x)))
plot(vec.mat.result)

The plot above shows three panels, one for each unit.

Comparison with bench::press

An alternative method to compute asymptotic timings is via bench::press, which provides functionality for parameterized benchmarking (similar to atime_grid). Because atime() has special treatment of the N parameter, the code required for asymptotic measurement is relatively simple; compare the atime code above to the bench::press code below, which measures the same asymptotic quantities (seconds, kilobytes, length).

seconds.limit <- 0.01
done.vec <- NULL
measure.vars <- c("seconds","kilobytes","length")
press_result <- bench::press(N = N_seq, {
  exprs <- function(...)as.list(match.call()[-1])
  elist <- exprs(
    vector=numeric(N),
    matrix=matrix(0, N, N),
    Matrix=Matrix(0, N, N))
  elist[names(done.vec)] <- NA #Don't run exprs which already exceeded limit.
  mark.args <- c(elist, list(iterations=10, check=FALSE))
  mark.result <- do.call(bench::mark, mark.args)
  ## Rename some columns for easier interpretation.
  desc.vec <- attr(mark.result$expression, "description")
  mark.result$description <- desc.vec
  mark.result$seconds <- as.numeric(mark.result$median)
  mark.result$kilobytes <- as.numeric(mark.result$mem_alloc/1024)
  ## Compute length column to measure in addition to time/memory.
  mark.result$length <- NA
  for(desc.i in seq_along(desc.vec)){
    description <- desc.vec[[desc.i]]
    result <- eval(elist[[description]])
    mark.result$length[desc.i] <- length(result)
  }
  ## Set NA time/memory/length for exprs which were not run.
  mark.result[desc.vec %in% names(done.vec), measure.vars] <- NA
  ## If expr went over time limit, indicate it is done.
  over.limit <- mark.result$seconds > seconds.limit
  over.desc <- desc.vec[is.finite(mark.result$seconds) & over.limit]
  done.vec[over.desc] <<- TRUE
  mark.result
})

The bench::press code above is relatively complicated, because it re-implements two functions that are provided by atime:

Below we visualize the results from bench::press,

library(data.table)
(press_long <- melt(
  data.table(press_result),
  measure.vars=measure.vars,
  id.vars=c("N","description"),
  na.rm=TRUE))
if(require(ggplot2)){
  gg <- ggplot()+
    ggtitle("bench::press results for comparison")+
    facet_grid(variable ~ ., labeller=label_both, scales="free")+
    geom_line(aes(
      N, value,
      color=description),
      data=press_long)+
    scale_x_log10(limits=c(NA, max(press_long$N*2)))+
    scale_y_log10("")
  if(requireNamespace("directlabels")){
    directlabels::direct.label(gg,"right.polygons")
  }else gg
}

We can see that the plot from atime and bench::press are consistent.

Complexity class estimation with atime

Below we estimate the best asymptotic complexity classes:

vec.mat.best <- atime::references_best(vec.mat.result)
plot(vec.mat.best)

The plot above shows that

Below we estimate the throughput for some given limits:

vec.mat.pred <- predict(
  vec.mat.best,
  seconds=vec.mat.result$seconds.limit,
  ##kilobytes=1000,#not available on CRAN.
  length=100)
plot(vec.mat.pred)

In the plot above we can see the throughput N for a given limit of kilobytes, length or seconds. Below we use Matrix as a reference, and compute the throughput ratio, Matrix to other.

library(data.table)
dcast(vec.mat.pred$prediction[
, ratio := N[expr.name=="Matrix"]/N, by=unit
], unit + unit.value ~ expr.name, value.var="ratio")

From the table above (matrix column), we can see that the throughput of Matrix is 100-1000x larger than matrix, for the given limits.

Matrix Multiplication, 90% sparsity

First we show the difference between sparse and dense matrix multiplication, when the matrix has 90% zeros (10% non-zeros).

library(Matrix)
sparse.prop <- 0.9
dense.prop <- 1-sparse.prop
mult.result <- atime::atime(
  N=as.integer(10^seq(1,4,by=0.25)),
  setup={
    m <- matrix(0, N, N)
    set.seed(1)
    w <- rnorm(N)
    N.not.zero <- as.integer(dense.prop*N^2)
    m[sample(N^2, N.not.zero)] <- rnorm(N.not.zero)
    M <- Matrix(m)
  },
  sparse = M %*% w,
  dense = m %*% w,
  result=TRUE)
plot(mult.result)

Above we see that sparse is faster than dense, but by constant factors. Below we estimate the best asymptotic complexity classes:

mult.best <- atime::references_best(mult.result)
plot(mult.best)

Above we see that both sparse and dense matrix multiplication are quadratic O(N^2) time (for a quadratic number of non-zero entries).

Finally, we verify below that both methods yield the same result:

library(data.table)
mult.compare <- dcast(
  mult.result$measurements, N ~ expr.name, value.var="result"
)[
, equal := paste(all.equal(as.numeric(dense[[1]]), as.numeric(sparse[[1]])))
, by=N
][]
tibble::tibble(mult.compare)

Matrix multiplication, linear number of non-zeros

Next we show the difference between sparse and dense matrix multiplication, when the matrix has a linear number of non-zeros (asymptotically fewer than in the previous section).

library(Matrix)
mult.result <- atime::atime(
  N=as.integer(10^seq(1,4,by=0.25)),
  setup={
    m <- matrix(0, N, N)
    set.seed(1)
    w <- rnorm(N)
    N.not.zero <- N
    m[sample(N^2, N.not.zero)] <- rnorm(N.not.zero)
    M <- Matrix(m)
  },
  sparse = M %*% w,
  dense = m %*% w,
  result=TRUE)
plot(mult.result)

Above we see that sparse is asymptotically faster than dense (different asymptotic slopes). Below we estimate the best asymptotic complexity classes:

mult.best <- atime::references_best(mult.result)
plot(mult.best)

Above we see that sparse is linear O(N) time whereas dense is quadratic O(N^2) time (for a linear number of non-zero entries).

Finally, we verify below that both methods yield the same result:

library(data.table)
mult.compare <- dcast(
  mult.result$measurements, N ~ expr.name, value.var="result"
)[
, equal := paste(all.equal(as.numeric(dense[[1]]), as.numeric(sparse[[1]])))
, by=N
][]
tibble::tibble(mult.compare)

Matrix multiplication, linear and quadratic number of non-zeros

In this section we show how you can code both comparisons at the same time, without repetition. The trick is to first define a list of parameters to vary:

param.list <- list(
  non_zeros=c("N","N^2/10"),
  fun=c("matrix","Matrix")
)

After that we create a grid of expressions to evaluate, by expanding the parameter grid:

(expr.list <- atime::atime_grid(
  param.list,
  Mw=L[[fun]][[non_zeros]]%*%w,
  collapse="\n"))

Finally we pass the list of expressions to atime, along with a setup argument which creates the required list L of input data, based on the parameters:

mult.result <- atime::atime(
  N=as.integer(10^seq(1,3.5,by=0.25)),
  setup={
    L <- list()
    set.seed(1)
    w <- rnorm(N)
    for(non_zeros in param.list$non_zeros){
      N.not.zero <- as.integer(eval(str2lang(non_zeros)))
      m <- matrix(0, N, N)
      m[sample(N^2, N.not.zero)] <- rnorm(N.not.zero)
      for(fun in param.list$fun){
        L[[fun]][[non_zeros]] <- get(fun)(as.numeric(m), N, N)
      }
    }
  },
  expr.list=expr.list)
plot(mult.result)

Below we estimate the best asymptotic complexity classes:

mult.best <- atime::references_best(mult.result)
plot(mult.best)

Below we show an alternative visualization:

only.seconds <- mult.best
only.seconds$measurements <- mult.best$measurements[unit=="seconds"]
only.seconds$plot.references <- mult.best$plot.references[unit=="seconds"]
if(require(ggplot2)){
  plot(only.seconds)+
    facet_grid(non_zeros ~ fun, labeller=label_both)
}

Conclusion

Overall in this vignette we have shown how atime can be used to demonstrate when sparse matrices can be used for efficient computations.

We also showed a comparison between atime and bench::press, which highlighted two areas where atime is more convenient (stopping after exceeding a time limit, and measuring quantities other than time/memory as a function of data size N).



Try the atime package in your browser

Any scripts or data that you put into this service are public.

atime documentation built on April 12, 2025, 1:12 a.m.