# Simple Self-Attention from Scratch In attention: Self-Attention Algorithm

```knitr::opts_chunk\$set(
collapse = TRUE,
comment = "#>"
)
library(attention)
```

This vignette describes how to implement the attention mechanism - which forms the basis of transformers - in the R language.

The code is translated from the Python original by Stefania Cristina (University of Malta) in her post The Attention Mechanism from Scratch.

We begin by generating encoder representations of four different words.

```# encoder representations of four different words
word_1 = matrix(c(1,0,0), nrow=1)
word_2 = matrix(c(0,1,0), nrow=1)
word_3 = matrix(c(1,1,0), nrow=1)
word_4 = matrix(c(0,0,1), nrow=1)
```

Next, we stack the word embeddings into a single array (in this case a matrix) which we call `words`.

```# stacking the word embeddings into a single array
words = rbind(word_1,
word_2,
word_3,
word_4)
```

Let's see what this looks like.

```print(words)
```

Next, we generate random integers on the domain `[0,3]`.

```# initializing the weight matrices (with random values)
set.seed(0)
W_Q = matrix(floor(runif(9, min=0, max=3)),nrow=3,ncol=3)
W_K = matrix(floor(runif(9, min=0, max=3)),nrow=3,ncol=3)
W_V = matrix(floor(runif(9, min=0, max=3)),nrow=3,ncol=3)
```

Next, we generate the Queries (`Q`), Keys (`K`), and Values (`V`). The `%*%` operator performs the matrix multiplication. You can view the R help page using `help('%*%')` (or the online An Introduction to R).

```# generating the queries, keys and values
Q = words %*% W_Q
K = words %*% W_K
V = words %*% W_V
```

Following this, we score the Queries (`Q`) against the Key (`K`) vectors (which are transposed for the multiplation using `t()`, see `help('t')` for more info).

```# scoring the query vectors against all key vectors
scores = Q %*% t(K)
print(scores)
```

We now generate the `weights` matrix.

```weights = ComputeWeights(scores)
```

Let's have a look at the `weights` matrix.

```print(weights)
```

Finally, we compute the `attention` as a weighted sum of the value vectors (which are combined in the matrix `V`).

```# computing the attention by a weighted sum of the value vectors
attention = weights %*% V
```

Now we can view the results using:

```print(attention)
```

After working through this, have a look at the Complete Self-Attention from Scratch vignette.

## Try the attention package in your browser

Any scripts or data that you put into this service are public.

attention documentation built on Nov. 10, 2023, 9:09 a.m.