gva.augmentedRCBD: Perform Genetic Variability Analysis on 'augmentedRCBD'...

View source: R/gva.augmentedRCBD.R

gva.augmentedRCBDR Documentation

Perform Genetic Variability Analysis on augmentedRCBD Output

Description

gva.augmentedRCBD performs genetic variability analysis on an object of class augmentedRCBD. \loadmathjax

Usage

gva.augmentedRCBD(aug, k = 2.063)

Arguments

aug

An object of class augmentedRCBD.

k

The standardized selection differential or selection intensity. Default is 2.063 for 5% selection proportion (see Details).

Details

gva.augmentedRCBD performs genetic variability analysis from the ANOVA results in an object of class augmentedRCBD and computes several variability estimates.

The phenotypic, genotypic and environmental variance (\mjseqn\sigma^2_p, \mjseqn\sigma^2_g and \mjseqn\sigma^2_e ) are obtained from the ANOVA tables according to the expected value of mean square described by Federer and Searle (1976) as follows:

\mjsdeqn\sigma

^2_g = \sigma^2_p - \sigma^2_e

Phenotypic and genotypic coefficients of variation (\mjseqnPCV and \mjseqnGCV) are estimated according to Burton (1951, 1952) as follows:

\mjsdeqn

GCV = \frac\sigma^2_g\sqrt\overlinex \times 100

Where \mjseqn\overlinex is the mean.

The estimates of \mjseqnPCV and \mjseqnGCV are categorised according to Sivasubramanian and Madhavamenon (1978) as follows:

CV (%) Category
x \mjseqn < 10 Low
10 \mjseqn\le x \mjseqn < 20 Medium
\mjseqn\ge 20 High

The broad-sense heritability (\mjseqnH^2) is calculated according to method of Lush (1940) as follows:

\mjsdeqn

H^2 = \frac\sigma^2_g\sigma^2_p

The estimates of broad-sense heritability (\mjseqnH^2) are categorised according to Robinson (1966) as follows:

\mjseqnH^2 Category
x \mjseqn < 30 Low
30 \mjseqn\le x \mjseqn < 60 Medium
\mjseqn\ge 60 High

Genetic advance (\mjseqnGA) is estimated and categorised according to Johnson et al., (1955) as follows:

\mjsdeqn

GA = k \times \sigma_g \times \fracH^2100

Where the constant \mjseqnk is the standardized selection differential or selection intensity. The value of \mjseqnk at 5% proportion selected is 2.063. Values of \mjseqnk at other selected proportions are available in Appendix Table A of Falconer and Mackay (1996).

Selection intensity (\mjseqnk) can also be computed in R as below:

If p is the proportion of selected individuals, then deviation of truncation point from mean (x) and selection intensity (k) are as follows:

x = qnorm(1-p)

k = dnorm(qnorm(1 - p))/p

Using the same the Appendix Table A of Falconer and Mackay (1996) can be recreated as follows.

TableA <- data.frame(p = c(seq(0.01, 0.10, 0.01), NA,
                           seq(0.10, 0.50, 0.02), NA,
                           seq(1, 5, 0.2), NA,
                           seq(5, 10, 0.5), NA,
                           seq(10, 50, 1)))
TableA$x <- qnorm(1-(TableA$p/100))
TableA$i <- dnorm(qnorm(1 - (TableA$p/100)))/(TableA$p/100)

Appendix Table A (Falconer and Mackay, 1996)

p% x i
0.01 3.71901649 3.9584797
0.02 3.54008380 3.7892117
0.03 3.43161440 3.6869547
0.04 3.35279478 3.6128288
0.05 3.29052673 3.5543807
0.06 3.23888012 3.5059803
0.07 3.19465105 3.4645890
0.08 3.15590676 3.4283756
0.09 3.12138915 3.3961490
0.10 3.09023231 3.3670901
<> <> <>
0.10 3.09023231 3.3670901
0.12 3.03567237 3.3162739
0.14 2.98888227 3.2727673
0.16 2.94784255 3.2346647
0.18 2.91123773 3.2007256
0.20 2.87816174 3.1700966
0.22 2.84796329 3.1421647
0.24 2.82015806 3.1164741
0.26 2.79437587 3.0926770
0.28 2.77032723 3.0705013
0.30 2.74778139 3.0497304
0.32 2.72655132 3.0301887
0.34 2.70648331 3.0117321
0.36 2.68744945 2.9942406
0.38 2.66934209 2.9776133
0.40 2.65206981 2.9617646
0.42 2.63555424 2.9466212
0.44 2.61972771 2.9321196
0.46 2.60453136 2.9182048
0.48 2.58991368 2.9048286
0.50 2.57582930 2.8919486
<> <> <>
1.00 2.32634787 2.6652142
1.20 2.25712924 2.6028159
1.40 2.19728638 2.5490627
1.60 2.14441062 2.5017227
1.80 2.09692743 2.4593391
2.00 2.05374891 2.4209068
2.20 2.01409081 2.3857019
2.40 1.97736843 2.3531856
2.60 1.94313375 2.3229451
2.80 1.91103565 2.2946575
3.00 1.88079361 2.2680650
3.20 1.85217986 2.2429584
3.40 1.82500682 2.2191656
3.60 1.79911811 2.1965431
3.80 1.77438191 2.1749703
4.00 1.75068607 2.1543444
4.20 1.72793432 2.1345772
4.40 1.70604340 2.1155928
4.60 1.68494077 2.0973249
4.80 1.66456286 2.0797152
5.00 1.64485363 2.0627128
<> <> <>
5.00 1.64485363 2.0627128
5.50 1.59819314 2.0225779
6.00 1.55477359 1.9853828
6.50 1.51410189 1.9506784
7.00 1.47579103 1.9181131
7.50 1.43953147 1.8874056
8.00 1.40507156 1.8583278
8.50 1.37220381 1.8306916
9.00 1.34075503 1.8043403
9.50 1.31057911 1.7791417
10.00 1.28155157 1.7549833
<> <> <>
10.00 1.28155157 1.7549833
11.00 1.22652812 1.7094142
12.00 1.17498679 1.6670040
13.00 1.12639113 1.6272701
14.00 1.08031934 1.5898336
15.00 1.03643339 1.5543918
16.00 0.99445788 1.5206984
17.00 0.95416525 1.4885502
18.00 0.91536509 1.4577779
19.00 0.87789630 1.4282383
20.00 0.84162123 1.3998096
21.00 0.80642125 1.3723871
22.00 0.77219321 1.3458799
23.00 0.73884685 1.3202091
24.00 0.70630256 1.2953050
25.00 0.67448975 1.2711063
26.00 0.64334541 1.2475585
27.00 0.61281299 1.2246130
28.00 0.58284151 1.2022262
29.00 0.55338472 1.1803588
30.00 0.52440051 1.1589754
31.00 0.49585035 1.1380436
32.00 0.46769880 1.1175342
33.00 0.43991317 1.0974204
34.00 0.41246313 1.0776774
35.00 0.38532047 1.0582829
36.00 0.35845879 1.0392158
37.00 0.33185335 1.0204568
38.00 0.30548079 1.0019882
39.00 0.27931903 0.9837932
40.00 0.25334710 0.9658563
41.00 0.22754498 0.9481631
42.00 0.20189348 0.9306998
43.00 0.17637416 0.9134539
44.00 0.15096922 0.8964132
45.00 0.12566135 0.8795664
46.00 0.10043372 0.8629028
47.00 0.07526986 0.8464123
48.00 0.05015358 0.8300851
49.00 0.02506891 0.8139121
50.00 0.00000000 0.7978846

Where p% is the selected percentage of individuals from a population, x is the deviation of the point of truncation of selected individuals from population mean and i is the selection intensity.

Genetic advance as per cent of mean (\mjseqnGAM) are estimated and categorised according to Johnson et al., (1955) as follows:

\mjsdeqn

GAM = \fracGA\overlinex \times 100

GAM Category
x \mjseqn < 10 Low
10 \mjseqn\le x \mjseqn < 20 Medium
\mjseqn\ge 20 High

Value

A list with the following descriptive statistics:

Mean

The mean value.

PV

Phenotyic variance.

GV

Genotyipc variance.

EV

Environmental variance.

GCV

Genotypic coefficient of variation

GCV category

The \mjseqnGCV category according to \insertCitesivasubramaniam_genotypic_1973;textualaugmentedRCBD.

PCV

Phenotypic coefficient of variation

PCV category

The \mjseqnPCV category according to \insertCitesivasubramaniam_genotypic_1973;textualaugmentedRCBD.

ECV

Environmental coefficient of variation

hBS

The broad-sense heritability (\mjseqnH^2) \insertCitelush_intra-sire_1940augmentedRCBD.

hBS category

The \mjseqnH^2 category according to \insertCiterobinson_quantitative_1966;textualaugmentedRCBD.

GA

Genetic advance \insertCitejohnson_estimates_1955augmentedRCBD.

GAM

Genetic advance as per cent of mean \insertCitejohnson_estimates_1955augmentedRCBD.

GAM category

The \mjseqnGAM category according to \insertCitejohnson_estimates_1955;textualaugmentedRCBD.

Note

Genetic variability analysis needs to be performed only if the sum of squares of "Treatment: Test" are significant.

Negative estimates of variance components if computed are not abnormal. For information on how to deal with these, refer Robinson (1955) and Dudley and Moll (1969).

References

\insertRef

lush_intra-sire_1940augmentedRCBD

\insertRef

burton_quantitative_1951augmentedRCBD

\insertRef

burton_qualitative_1952augmentedRCBD

\insertRef

johnson_estimates_1955augmentedRCBD

\insertRef

robinson_genetic_1955augmentedRCBD

\insertRef

robinson_quantitative_1966augmentedRCBD

\insertRef

dudley_interpretation_1969augmentedRCBD

\insertRef

sivasubramaniam_genotypic_1973augmentedRCBD

\insertRef

federerModelConsiderationsVariance1976augmentedRCBD

\insertRef

falconer_introduction_1996augmentedRCBD

See Also

augmentedRCBD

Examples

# Example data
blk <- c(rep(1,7),rep(2,6),rep(3,7))
trt <- c(1, 2, 3, 4, 7, 11, 12, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 8, 6, 10)
y1 <- c(92, 79, 87, 81, 96, 89, 82, 79, 81, 81, 91, 79, 78, 83, 77, 78, 78,
        70, 75, 74)
y2 <- c(258, 224, 238, 278, 347, 300, 289, 260, 220, 237, 227, 281, 311, 250,
        240, 268, 287, 226, 395, 450)
data <- data.frame(blk, trt, y1, y2)
# Convert block and treatment to factors
data$blk <- as.factor(data$blk)
data$trt <- as.factor(data$trt)
# Results for variable y1
out1 <- augmentedRCBD(data$blk, data$trt, data$y1, method.comp = "lsd",
                      alpha = 0.05, group = TRUE, console = TRUE)
# Results for variable y2
out2 <- augmentedRCBD(data$blk, data$trt, data$y2, method.comp = "lsd",
                     alpha = 0.05, group = TRUE, console = TRUE)

# Genetic variability analysis
gva.augmentedRCBD(out1)
gva.augmentedRCBD(out2)

augmentedRCBD documentation built on Aug. 19, 2023, 1:06 a.m.