View source: R/gva.augmentedRCBD.R
gva.augmentedRCBD | R Documentation |
augmentedRCBD
Outputgva.augmentedRCBD
performs genetic variability analysis on an object of
class augmentedRCBD
. \loadmathjax
gva.augmentedRCBD(aug, k = 2.063)
aug |
An object of class |
k |
The standardized selection differential or selection intensity. Default is 2.063 for 5% selection proportion (see Details). |
gva.augmentedRCBD
performs genetic variability analysis from the ANOVA
results in an object of class augmentedRCBD
and computes several
variability estimates.
The phenotypic, genotypic and environmental variance (\mjseqn\sigma^2_p, \mjseqn\sigma^2_g and \mjseqn\sigma^2_e ) are obtained from the ANOVA tables according to the expected value of mean square described by Federer and Searle (1976) as follows:
\mjsdeqn\sigma^2_g = \sigma^2_p - \sigma^2_e
Phenotypic and genotypic coefficients of variation (\mjseqnPCV and \mjseqnGCV) are estimated according to Burton (1951, 1952) as follows:
\mjsdeqnGCV = \frac\sigma^2_g\sqrt\overlinex \times 100
Where \mjseqn\overlinex is the mean.
The estimates of \mjseqnPCV and \mjseqnGCV are categorised according to Sivasubramanian and Madhavamenon (1978) as follows:
CV (%) | Category |
x \mjseqn < 10 | Low |
10 \mjseqn\le x \mjseqn < 20 | Medium |
\mjseqn\ge 20 | High |
The broad-sense heritability (\mjseqnH^2) is calculated according to method of Lush (1940) as follows:
\mjsdeqnH^2 = \frac\sigma^2_g\sigma^2_p
The estimates of broad-sense heritability (\mjseqnH^2) are categorised according to Robinson (1966) as follows:
\mjseqnH^2 | Category |
x \mjseqn < 30 | Low |
30 \mjseqn\le x \mjseqn < 60 | Medium |
\mjseqn\ge 60 | High |
Genetic advance (\mjseqnGA) is estimated and categorised according to Johnson et al., (1955) as follows:
\mjsdeqnGA = k \times \sigma_g \times \fracH^2100
Where the constant \mjseqnk is the standardized selection differential or selection intensity. The value of \mjseqnk at 5% proportion selected is 2.063. Values of \mjseqnk at other selected proportions are available in Appendix Table A of Falconer and Mackay (1996).
Selection intensity (\mjseqnk) can also be computed in R as below:
If p
is the proportion of selected individuals, then deviation of
truncation point from mean (x
) and selection intensity (k
) are
as follows:
x = qnorm(1-p)
k = dnorm(qnorm(1 - p))/p
Using the same the Appendix Table A of Falconer and Mackay (1996) can be recreated as follows.
TableA <- data.frame(p = c(seq(0.01, 0.10, 0.01), NA, seq(0.10, 0.50, 0.02), NA, seq(1, 5, 0.2), NA, seq(5, 10, 0.5), NA, seq(10, 50, 1))) TableA$x <- qnorm(1-(TableA$p/100)) TableA$i <- dnorm(qnorm(1 - (TableA$p/100)))/(TableA$p/100)
Appendix Table A (Falconer and Mackay, 1996)
p% | x | i |
0.01 | 3.71901649 | 3.9584797 |
0.02 | 3.54008380 | 3.7892117 |
0.03 | 3.43161440 | 3.6869547 |
0.04 | 3.35279478 | 3.6128288 |
0.05 | 3.29052673 | 3.5543807 |
0.06 | 3.23888012 | 3.5059803 |
0.07 | 3.19465105 | 3.4645890 |
0.08 | 3.15590676 | 3.4283756 |
0.09 | 3.12138915 | 3.3961490 |
0.10 | 3.09023231 | 3.3670901 |
<> | <> | <> |
0.10 | 3.09023231 | 3.3670901 |
0.12 | 3.03567237 | 3.3162739 |
0.14 | 2.98888227 | 3.2727673 |
0.16 | 2.94784255 | 3.2346647 |
0.18 | 2.91123773 | 3.2007256 |
0.20 | 2.87816174 | 3.1700966 |
0.22 | 2.84796329 | 3.1421647 |
0.24 | 2.82015806 | 3.1164741 |
0.26 | 2.79437587 | 3.0926770 |
0.28 | 2.77032723 | 3.0705013 |
0.30 | 2.74778139 | 3.0497304 |
0.32 | 2.72655132 | 3.0301887 |
0.34 | 2.70648331 | 3.0117321 |
0.36 | 2.68744945 | 2.9942406 |
0.38 | 2.66934209 | 2.9776133 |
0.40 | 2.65206981 | 2.9617646 |
0.42 | 2.63555424 | 2.9466212 |
0.44 | 2.61972771 | 2.9321196 |
0.46 | 2.60453136 | 2.9182048 |
0.48 | 2.58991368 | 2.9048286 |
0.50 | 2.57582930 | 2.8919486 |
<> | <> | <> |
1.00 | 2.32634787 | 2.6652142 |
1.20 | 2.25712924 | 2.6028159 |
1.40 | 2.19728638 | 2.5490627 |
1.60 | 2.14441062 | 2.5017227 |
1.80 | 2.09692743 | 2.4593391 |
2.00 | 2.05374891 | 2.4209068 |
2.20 | 2.01409081 | 2.3857019 |
2.40 | 1.97736843 | 2.3531856 |
2.60 | 1.94313375 | 2.3229451 |
2.80 | 1.91103565 | 2.2946575 |
3.00 | 1.88079361 | 2.2680650 |
3.20 | 1.85217986 | 2.2429584 |
3.40 | 1.82500682 | 2.2191656 |
3.60 | 1.79911811 | 2.1965431 |
3.80 | 1.77438191 | 2.1749703 |
4.00 | 1.75068607 | 2.1543444 |
4.20 | 1.72793432 | 2.1345772 |
4.40 | 1.70604340 | 2.1155928 |
4.60 | 1.68494077 | 2.0973249 |
4.80 | 1.66456286 | 2.0797152 |
5.00 | 1.64485363 | 2.0627128 |
<> | <> | <> |
5.00 | 1.64485363 | 2.0627128 |
5.50 | 1.59819314 | 2.0225779 |
6.00 | 1.55477359 | 1.9853828 |
6.50 | 1.51410189 | 1.9506784 |
7.00 | 1.47579103 | 1.9181131 |
7.50 | 1.43953147 | 1.8874056 |
8.00 | 1.40507156 | 1.8583278 |
8.50 | 1.37220381 | 1.8306916 |
9.00 | 1.34075503 | 1.8043403 |
9.50 | 1.31057911 | 1.7791417 |
10.00 | 1.28155157 | 1.7549833 |
<> | <> | <> |
10.00 | 1.28155157 | 1.7549833 |
11.00 | 1.22652812 | 1.7094142 |
12.00 | 1.17498679 | 1.6670040 |
13.00 | 1.12639113 | 1.6272701 |
14.00 | 1.08031934 | 1.5898336 |
15.00 | 1.03643339 | 1.5543918 |
16.00 | 0.99445788 | 1.5206984 |
17.00 | 0.95416525 | 1.4885502 |
18.00 | 0.91536509 | 1.4577779 |
19.00 | 0.87789630 | 1.4282383 |
20.00 | 0.84162123 | 1.3998096 |
21.00 | 0.80642125 | 1.3723871 |
22.00 | 0.77219321 | 1.3458799 |
23.00 | 0.73884685 | 1.3202091 |
24.00 | 0.70630256 | 1.2953050 |
25.00 | 0.67448975 | 1.2711063 |
26.00 | 0.64334541 | 1.2475585 |
27.00 | 0.61281299 | 1.2246130 |
28.00 | 0.58284151 | 1.2022262 |
29.00 | 0.55338472 | 1.1803588 |
30.00 | 0.52440051 | 1.1589754 |
31.00 | 0.49585035 | 1.1380436 |
32.00 | 0.46769880 | 1.1175342 |
33.00 | 0.43991317 | 1.0974204 |
34.00 | 0.41246313 | 1.0776774 |
35.00 | 0.38532047 | 1.0582829 |
36.00 | 0.35845879 | 1.0392158 |
37.00 | 0.33185335 | 1.0204568 |
38.00 | 0.30548079 | 1.0019882 |
39.00 | 0.27931903 | 0.9837932 |
40.00 | 0.25334710 | 0.9658563 |
41.00 | 0.22754498 | 0.9481631 |
42.00 | 0.20189348 | 0.9306998 |
43.00 | 0.17637416 | 0.9134539 |
44.00 | 0.15096922 | 0.8964132 |
45.00 | 0.12566135 | 0.8795664 |
46.00 | 0.10043372 | 0.8629028 |
47.00 | 0.07526986 | 0.8464123 |
48.00 | 0.05015358 | 0.8300851 |
49.00 | 0.02506891 | 0.8139121 |
50.00 | 0.00000000 | 0.7978846 |
Where p% is the selected percentage of individuals from a population, x is the deviation of the point of truncation of selected individuals from population mean and i is the selection intensity.
Genetic advance as per cent of mean (\mjseqnGAM) are estimated and categorised according to Johnson et al., (1955) as follows:
\mjsdeqnGAM = \fracGA\overlinex \times 100
GAM | Category |
x \mjseqn < 10 | Low |
10 \mjseqn\le x \mjseqn < 20 | Medium |
\mjseqn\ge 20 | High |
A list with the following descriptive statistics:
Mean |
The mean value. |
PV |
Phenotyic variance. |
GV |
Genotyipc variance. |
EV |
Environmental variance. |
GCV |
Genotypic coefficient of variation |
GCV category |
The \mjseqnGCV category according to \insertCitesivasubramaniam_genotypic_1973;textualaugmentedRCBD. |
PCV |
Phenotypic coefficient of variation |
PCV category |
The \mjseqnPCV category according to \insertCitesivasubramaniam_genotypic_1973;textualaugmentedRCBD. |
ECV |
Environmental coefficient of variation |
hBS |
The broad-sense heritability (\mjseqnH^2) \insertCitelush_intra-sire_1940augmentedRCBD. |
hBS category |
The \mjseqnH^2 category according to \insertCiterobinson_quantitative_1966;textualaugmentedRCBD. |
GA |
Genetic advance \insertCitejohnson_estimates_1955augmentedRCBD. |
GAM |
Genetic advance as per cent of mean \insertCitejohnson_estimates_1955augmentedRCBD. |
GAM category |
The \mjseqnGAM category according to \insertCitejohnson_estimates_1955;textualaugmentedRCBD. |
Genetic variability analysis needs to be performed only if the sum of squares of "Treatment: Test" are significant.
Negative estimates of variance components if computed are not abnormal. For information on how to deal with these, refer Robinson (1955) and Dudley and Moll (1969).
lush_intra-sire_1940augmentedRCBD
\insertRefburton_quantitative_1951augmentedRCBD
\insertRefburton_qualitative_1952augmentedRCBD
\insertRefjohnson_estimates_1955augmentedRCBD
\insertRefrobinson_genetic_1955augmentedRCBD
\insertRefrobinson_quantitative_1966augmentedRCBD
\insertRefdudley_interpretation_1969augmentedRCBD
\insertRefsivasubramaniam_genotypic_1973augmentedRCBD
\insertReffedererModelConsiderationsVariance1976augmentedRCBD
\insertReffalconer_introduction_1996augmentedRCBD
augmentedRCBD
# Example data
blk <- c(rep(1,7),rep(2,6),rep(3,7))
trt <- c(1, 2, 3, 4, 7, 11, 12, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 8, 6, 10)
y1 <- c(92, 79, 87, 81, 96, 89, 82, 79, 81, 81, 91, 79, 78, 83, 77, 78, 78,
70, 75, 74)
y2 <- c(258, 224, 238, 278, 347, 300, 289, 260, 220, 237, 227, 281, 311, 250,
240, 268, 287, 226, 395, 450)
data <- data.frame(blk, trt, y1, y2)
# Convert block and treatment to factors
data$blk <- as.factor(data$blk)
data$trt <- as.factor(data$trt)
# Results for variable y1
out1 <- augmentedRCBD(data$blk, data$trt, data$y1, method.comp = "lsd",
alpha = 0.05, group = TRUE, console = TRUE)
# Results for variable y2
out2 <- augmentedRCBD(data$blk, data$trt, data$y2, method.comp = "lsd",
alpha = 0.05, group = TRUE, console = TRUE)
# Genetic variability analysis
gva.augmentedRCBD(out1)
gva.augmentedRCBD(out2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.