View source: R/adjustedPlot2.survreg.R
adjustedPlot2.survreg | R Documentation |
Draw predicted survival curve as a ggplot with an object survreg
adjustedPlot2.survreg(
x,
xnames = NULL,
pred.values = list(),
maxy.lev = 5,
newdata = NULL,
addCox = FALSE,
autovar = TRUE,
legend.position = NULL,
facet = NULL
)
x |
An object of class survreg |
xnames |
Character Names of explanatory variable to plot |
pred.values |
A list A list of predictor values |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
newdata |
A data.frame or NULL |
addCox |
logical Whether or not add KM |
autovar |
logical |
legend.position |
Character Default value is "topright" |
facet |
Character name(s) of facet variable(s) |
A ggplot
library(survival)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
adjustedPlot(x,type="plot")
adjustedPlot(x)
adjustedPlot(x,addCox=TRUE)
## Not run:
x=survreg(Surv(time, status) ~ sex, data=lung,dist="weibull")
adjustedPlot(x,addCox=TRUE)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
adjustedPlot(x,addCox=TRUE)
x=survreg(Surv(time, status) ~ ph.ecog + age + sex, data=lung, dist="weibull")
pred.values=list(ph.ecog=0:3,sex=1:2,age=c(20,40,60,80))
adjustedPlot(x)
adjustedPlot(x,addCox=TRUE)
adjustedPlot(x,addCox=TRUE,xnames=c("ph.ecog","sex"),facet="sex")
adjustedPlot(x,pred.values=pred.values,addCox=TRUE,legend.position="top")+xlim(c(1,1000))
adjustedPlot(x,pred.values=pred.values,xnames=c("ph.ecog","sex","age"),facet=c("ph.ecog","sex"))
adjustedPlot(x,pred.values=pred.values,xnames=c("ph.ecog","sex","age"),facet=c("age","sex"))
adjustedPlot(x,pred.values=pred.values,addCox=TRUE)
adjustedPlot(x,addCox=TRUE)
adjustedPlot(x,pred.values=list(age=c(20,40,60,80),sex=1,ph.ecog=3),addCox=TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.