Description Usage Format Examples
This is an example set training.matrix
of 5000 image patches of 10 by 10 pixels, randomly cropped from a set of 10 decoloured nature photos. The rows of training.matrix
correspond to the training
examples, the columns correspond to pixels of the image patches.
1 | data('training_matrix_N=5e3_Ninput=100')
|
The format is: chr "training_matrix_N=5e3_Ninput=100"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | data('training_matrix_N=5e3_Ninput=100') ## load the example training.matrix
## Set up the autoencoder architecture:
nl=3 ## number of layers (default is 3: input, hidden, output)
unit.type = "logistic" ## specify the network unit type, i.e., the unit's
## activation function ("logistic" or "tanh")
Nx.patch=10 ## width of training image patches, in pixels
Ny.patch=10 ## height of training image patches, in pixels
N.input = Nx.patch*Ny.patch ## number of units (neurons) in the input layer (one unit per pixel)
N.hidden = 10*10 ## number of units in the hidden layer
lambda = 0.0002 ## weight decay parameter
beta = 6 ## weight of sparsity penalty term
rho = 0.01 ## desired sparsity parameter
epsilon <- 0.001 ## a small parameter for initialization of weights
## as small gaussian random numbers sampled from N(0,epsilon^2)
max.iterations = 2000 ## number of iterations in optimizer
## Train the autoencoder on training.matrix using BFGS optimization method
## (see help('optim') for details):
## Not run:
autoencoder.object <- autoencode(X.train=training.matrix,nl=nl,N.hidden=N.hidden,
unit.type=unit.type,lambda=lambda,beta=beta,rho=rho,epsilon=epsilon,
optim.method="BFGS",max.iterations=max.iterations,
rescale.flag=TRUE,rescaling.offset=0.001)
## End(Not run)
## Extract weights W and biases b from autoencoder.object:
W <- autoencoder.object$W
b <- autoencoder.object$b
## Visualize learned features of the autoencoder:
(autoencoder.object,Nx.patch,Ny.patch)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.