Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(rlang_trace_top_env = rlang::current_env())
## ----setup, message=FALSE, warning=FALSE, results='hide'----------------------
library(autostats)
library(workflows)
library(dplyr)
library(tune)
library(rsample)
library(hardhat)
## -----------------------------------------------------------------------------
set.seed(34)
iris %>%
dplyr::as_tibble() %>%
framecleaner::create_dummies(remove_first_dummy = TRUE) -> iris1
iris1 %>%
tidy_formula(target = Petal.Length) -> petal_form
petal_form
## -----------------------------------------------------------------------------
iris1 %>%
rsample::initial_split() -> iris_split
iris_split %>%
rsample::analysis() -> iris_train
iris_split %>%
rsample::assessment() -> iris_val
iris_split
## ----eval=FALSE---------------------------------------------------------------
# iris_train %>%
# auto_tune_xgboost(formula = petal_form, n_iter = 7L, tune_method = "bayes") -> xgb_tuned_bayes
#
# xgb_tuned_bayes %>%
# parsnip::fit(iris_train) %>%
# hardhat::extract_fit_engine() -> xgb_tuned_fit_bayes
#
# xgb_tuned_fit_bayes %>%
# visualize_model()
#
## ----eval=FALSE---------------------------------------------------------------
# iris_train %>%
# auto_tune_xgboost(formula = petal_form, n_iter = 5L,trees = 20L, loss_reduction = 2, mtry = .5, tune_method = "grid", parallel = FALSE) -> xgb_tuned_grid
#
# xgb_tuned_grid %>%
# parsnip::fit(iris_train) %>%
# parsnip::extract_fit_engine() -> xgb_tuned_fit_grid
#
# xgb_tuned_fit_grid %>%
# visualize_model()
## -----------------------------------------------------------------------------
iris_train %>%
tidy_xgboost(formula = petal_form) -> xgb_base
## -----------------------------------------------------------------------------
iris_train %>%
tidy_xgboost(petal_form,
trees = 250L,
tree_depth = 3L,
sample_size = .5,
mtry = .5,
min_n = 2) -> xgb_opt
## -----------------------------------------------------------------------------
xgb_base %>%
tidy_predict(newdata = iris_val, form = petal_form) -> iris_val2
xgb_opt %>%
tidy_predict(newdata = iris_val2, petal_form) -> iris_val3
iris_val3 %>%
names()
## -----------------------------------------------------------------------------
iris_val3 %>%
eval_preds()
## -----------------------------------------------------------------------------
xgb_base %>%
tidy_shap(newdata = iris_val, form = petal_form) -> shap_list
## -----------------------------------------------------------------------------
shap_list$shap_tbl
## -----------------------------------------------------------------------------
shap_list$shap_summary
## -----------------------------------------------------------------------------
shap_list$swarmplot
## ----eval=FALSE, message=FALSE, warning=FALSE---------------------------------
# shap_list$scatterplots
## -----------------------------------------------------------------------------
xgb_base %>%
xgboost::xgb.plot.deepness()
## -----------------------------------------------------------------------------
xgb_base %>%
xgboost::xgb.plot.deepness()
## ----eval=FALSE, message=FALSE, warning=FALSE---------------------------------
# xgb_base %>%
# xgboost::xgb.plot.tree(model = ., trees = 1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.