AUTO_VI | R Documentation |
This is the class of auto visual inference,
inherited from bandicoot::BASE. It is an environment
with S3 class bandicoot_oop
.
auto_vi(
fitted_model,
keras_model = NULL,
data = NULL,
node_index = 1L,
env = new.env(parent = parent.frame()),
init_call = sys.call()
)
residual_checker(
fitted_model,
keras_model_name = "vss_phn_32",
data = NULL,
node_index = 1L,
env = new.env(parent = parent.frame()),
init_call = sys.call()
)
fitted_model |
Model. A model object, e.g. |
keras_model |
Keras model. A trained computer vision model. |
data |
Data frame. The data used to fit the model. |
node_index |
Integer. An index indicating which node of the output layer contains the visual signal strength. This is particularly useful when the keras model has more than one output nodes. |
env |
Environment. The instance environment. |
init_call |
Call. Contents of the |
keras_model_name |
Character. A model name to be used by
|
An instance environment.
auto_vi()
: Class constructor, same as AUTO_VI$instantiate()
.
residual_checker()
: Class constructor, same as AUTO_VI$instantiate()
, but
uses the keras_model_name
argument rather than keras_model
.
Direct:
bandicoot::BASE
C:
AUTO_VI$check_result
A:
AUTO_VI$auxiliary()
B:
AUTO_VI$boot_method()
AUTO_VI$boot_vss()
C:
AUTO_VI$check()
F:
AUTO_VI$feature_pca()
AUTO_VI$feature_pca_plot()
G:
AUTO_VI$get_data()
AUTO_VI$get_fitted_and_resid()
I:
AUTO_VI$..init..()
L:
AUTO_VI$lineup_check()
AUTO_VI$likelihood_ratio()
N:
AUTO_VI$null_method()
AUTO_VI$null_vss()
P:
AUTO_VI$p_value()
AUTO_VI$plot_pair()
AUTO_VI$plot_lineup()
AUTO_VI$plot_resid()
R:
AUTO_VI$rotate_resid()
S:
AUTO_VI$save_plot()
AUTO_VI$..str..()
AUTO_VI$summary()
AUTO_VI$summary_density_plot()
AUTO_VI$summary_plot()
AUTO_VI$summary_rank_plot()
V:
AUTO_VI$vss()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.